trinomial

简明释义

[traɪˈnəʊmiəl][traɪˈnomɪəl]

n. (代数)三项式;三名法

adj. (代数)三项式的;三名(法)的

英英释义

A trinomial is a polynomial that consists of three terms, typically expressed in the form ax^n + bx^(n-1) + c, where a, b, and c are coefficients and n is a non-negative integer.

三项式是由三个项组成的多项式,通常表示为 ax^n + bx^(n-1) + c,其中 a、b 和 c 是系数,n 是非负整数。

单词用法

quadratic trinomial

二次三项式

cubic trinomial

三次三项式

factoring a trinomial

因式分解三项式

solving a trinomial equation

解三项式方程

同义词

polynomial

多项式

A trinomial is a specific type of polynomial that consists of three terms.

三项式是一种特定的多项式,包含三个项。

expression

表达式

In algebra, you often simplify expressions that include trinomials.

在代数中,您经常简化包含三项式的表达式。

algebraic expression

代数表达式

The quadratic formula can be derived from a trinomial expression.

二次公式可以从三项式表达式中推导出来。

反义词

monomial

单项式

A monomial has only one term.

单项式只有一个项。

binomial

二项式

A binomial consists of two terms.

二项式由两个项组成。

例句

1.A new high regular structure of partial parallel multiplier for irreducible trinomial generated finite field is proposed.

提出了一类新的具有高度规则性的部分并行三项式有限域乘法器架构。

2.The trinomial distribution risk model in discrete setting is explored . The probability of ultimate ruin and the probability laws of the surplus immediately before ruin are discussed with emphasis.

本文探讨了离散的三项分布风险模型,重点研究了与风险有关的最终破产概率和破产前一刻的盈余的概率律。

3.The trinomial distribution risk model in discrete setting is explored . The probability of ultimate ruin and the probability laws of the surplus immediately before ruin are discussed with emphasis.

本文探讨了离散的三项分布风险模型,重点研究了与风险有关的最终破产概率和破产前一刻的盈余的概率律。

4.Through the theory of probability, we show the formula of the trinomial option pricing model for finite periods in a stock market.

利用概率论的理论,推导出了某一假定证券市场中有限周期买入期权的三项式期权定价公式。

5.The quadratic formula can be used to solve any trinomial equation of the form ax² + bx + c = 0.

二次公式可以用来解决任何形式为 ax² + bx + c = 0 的三项式方程。

6.A perfect square trinomial can be recognized by the pattern a² + 2ab + b².

完美平方三项式可以通过模式 a² + 2ab + b² 来识别。

7.In algebra, a trinomial is a polynomial that consists of three terms.

在代数中,三项式是由三个项组成的多项式。

8.To factor the trinomial, we look for two numbers that multiply to the constant term and add up to the coefficient of the linear term.

要因式分解这个三项式,我们需要找到两个数,它们的乘积等于常数项,并且和等于线性项的系数。

9.When graphing a trinomial, you can find the vertex using the formula -b/2a.

在绘制三项式图形时,可以使用公式 -b/2a 找到顶点。

作文

In the realm of mathematics, particularly in algebra, the term trinomial refers to a polynomial that consists of three terms. Understanding trinomial expressions is crucial for solving equations and simplifying mathematical problems. A common example of a trinomial is the expression x² + 5x + 6. In this case, x² is the first term, 5x is the second term, and 6 is the third term. Each of these components plays a significant role in the overall structure of the polynomial.The concept of trinomial can be further explored through its applications in various mathematical operations. For instance, when factoring a trinomial, one seeks two binomials whose product yields the original trinomial. This process not only aids in solving quadratic equations but also enhances one’s ability to manipulate algebraic expressions effectively. The ability to factor a trinomial is essential for students as it lays the groundwork for more advanced topics in algebra and calculus.Moreover, the significance of trinomial expressions extends beyond basic algebra. In higher mathematics, trinomial forms are frequently encountered in calculus, particularly in the context of polynomial functions. Understanding how to work with trinomial expressions allows students to analyze the behavior of these functions, including their roots and intercepts. For example, the trinomial x² - 4x + 4 can be factored into (x - 2)(x - 2), revealing that it has a double root at x = 2. This insight is invaluable when graphing polynomial functions or solving real-world problems modeled by such equations.Furthermore, the study of trinomial expressions encourages critical thinking and problem-solving skills. Students learn to approach complex problems methodically, breaking them down into manageable parts. By practicing with trinomial equations, learners develop a deeper understanding of mathematical principles and enhance their analytical abilities.In addition to its mathematical importance, the term trinomial also appears in various scientific fields, including physics and engineering. Many physical phenomena can be described using polynomial equations, and trinomial forms often arise in these contexts. For example, the trajectory of an object under the influence of gravity can be modeled using a trinomial equation, allowing scientists and engineers to predict motion and design systems accordingly.In conclusion, the term trinomial encompasses a fundamental concept in algebra that is vital for students and professionals alike. Its applications range from basic polynomial manipulation to complex analyses in higher mathematics and science. By mastering trinomial expressions, individuals equip themselves with essential tools for tackling a variety of mathematical challenges. Thus, understanding and applying the concept of trinomial is not only beneficial for academic success but also for practical problem-solving in everyday life.

在数学领域,特别是代数中,术语trinomial指的是由三个项组成的多项式。理解trinomial表达式对于解决方程和简化数学问题至关重要。一个常见的trinomial例子是表达式x² + 5x + 6。在这个例子中,x²是第一项,5x是第二项,而6是第三项。每个组成部分在多项式的整体结构中都发挥着重要作用。trinomial的概念可以通过其在各种数学运算中的应用进一步探讨。例如,在对trinomial进行因式分解时,人们寻求两个二项式,其乘积等于原始的trinomial。这个过程不仅有助于解决二次方程,还增强了人们有效操作代数表达式的能力。能够对trinomial进行因式分解对学生来说至关重要,因为这为更高级的代数和微积分主题奠定了基础。此外,trinomial表达式的重要性超出了基础代数的范畴。在高等数学中,trinomial形式经常出现在微积分中,特别是在多项式函数的背景下。理解如何处理trinomial表达式使学生能够分析这些函数的行为,包括它们的根和截距。例如,trinomial x² - 4x + 4可以因式分解为(x - 2)(x - 2),揭示出它在x = 2处具有双重根。这一见解在绘制多项式函数图形或解决建模此类方程的实际问题时非常宝贵。此外,研究trinomial表达式还鼓励批判性思维和解决问题的能力。学生学习以系统的方式处理复杂问题,将其分解为可管理的部分。通过练习trinomial方程,学习者对数学原理有了更深入的理解,并增强了他们的分析能力。除了其数学重要性,术语trinomial还出现在包括物理和工程在内的各种科学领域。许多物理现象可以用多项式方程来描述,而trinomial形式通常出现在这些上下文中。例如,受重力影响的物体轨迹可以用trinomial方程建模,从而使科学家和工程师能够预测运动并相应地设计系统。总之,术语trinomial涵盖了代数中的一个基本概念,对于学生和专业人士来说都是至关重要的。它的应用范围从基本的多项式操作到高等数学和科学中的复杂分析。通过掌握trinomial表达式,个人为应对各种数学挑战装备了必要的工具。因此,理解和应用trinomial的概念不仅对学业成功有益,而且对日常生活中的实际问题解决也至关重要。