spectrometers
简明释义
英[ˌspɛktrəˈmɛtəz]美[ˌspɛktrəˈmɪtərz]
n. 光谱分析仪;[光]分光仪(spectrometer 的复数)
英英释义
单词用法
质谱仪 | |
红外光谱仪 |
同义词
光谱仪 | The spectroscope is used to analyze the light emitted by stars. | 光谱仪用于分析星星发出的光。 | |
光谱分析仪 | A spectral analyzer can help identify the chemical composition of a sample. | 光谱分析仪可以帮助识别样品的化学成分。 | |
波长计 | 波长计在激光应用中至关重要。 |
反义词
例句
1.The design of a pulsed field gradient unit for USES on NMR spectrometers is discussed.
给出一种用于核磁共振谱仪的脉冲场梯度单元的详细设计。
2.This theory is also applicable to the ion sources used in other mass spectrometers.
该理论原则上也适用于其它类型质谱计的离子源。
3.In MMS Spectrometers, a dispersive-grating geometry with a wide-area coded aperture takes the place of a traditional slit entrance.
在MMS光谱仪中,使用了色散光栅质谱法,并以大口径编码光阑代替了传统狭缝入口。
4.As linear array detector is employed in the system design, the spectrometer reaches much higher testing speed than the conventional spectrometers.
由于采用了一维线阵探测器,与传统扫描式光谱仪相比,本光谱仪的检测速度得到了极大的提高。
5.Nuclear Instruments and Methods in Physics Research, Section a: Accelerators, Spectrometers, Detectors, and Associated Equipment.
物理学研究中的核仪器与方法,A辑:加速器,分光仪,检测器和相关设备。
6.In the spectrum bandwidth and cost aspect, Spectrometers with prisms and grating are equivalent.
在光谱带宽和成本方面,棱镜光谱仪与光栅光谱仪基本接近。
7.The calibration of mass spectrometers for partial pressure remains a problem which has not been solved completely yet.
分压力质谱计的校准是一个没有完全解决的难题。
8.The environmental agency employs spectrometers to monitor air quality and detect pollutants.
环保机构使用光谱仪监测空气质量并检测污染物。
9.Medical laboratories utilize spectrometers to analyze blood samples for various diseases.
医学实验室利用光谱仪分析血样以检测各种疾病。
10.The research lab uses advanced spectrometers to analyze the composition of various materials.
研究实验室使用先进的光谱仪来分析各种材料的成分。
11.In astronomy, spectrometers help scientists study the light emitted by stars and galaxies.
在天文学中,光谱仪帮助科学家研究星星和星系发出的光。
12.Chemists rely on spectrometers for precise measurements of chemical concentrations in solutions.
化学家依赖光谱仪对溶液中化学浓度进行精确测量。
作文
Spectrometers are essential instruments used in various scientific fields to analyze the properties of light and matter. These devices measure the spectrum of light, allowing scientists to identify and quantify different substances based on their unique spectral signatures. The fundamental principle behind a spectrometer (光谱仪) is that every element emits or absorbs light at specific wavelengths. By examining these wavelengths, researchers can gain insights into the chemical composition and physical properties of materials.In chemistry, spectrometers (光谱仪) play a crucial role in identifying compounds and understanding their structures. For instance, in mass spectrometry, a type of spectrometer (光谱仪), molecules are ionized and then separated based on their mass-to-charge ratio. This allows chemists to determine the molecular weight of a substance and infer its structure. Similarly, infrared spectrometers (光谱仪) can provide information about molecular vibrations, helping to identify functional groups within organic compounds.In the field of astronomy, spectrometers (光谱仪) are used to analyze the light emitted from stars and galaxies. By studying the spectral lines produced by these celestial bodies, astronomers can deduce their composition, temperature, density, and motion. For example, the Doppler effect observed in the spectral lines can indicate whether an object is moving towards or away from Earth, providing valuable information about the universe's expansion.Environmental science also benefits from the use of spectrometers (光谱仪). They are employed to monitor pollutants in air, water, and soil. By analyzing the spectral data collected from samples, scientists can detect harmful substances and assess their concentrations. This information is critical for environmental protection and public health initiatives.Moreover, advancements in technology have led to the development of portable spectrometers (光谱仪), making it easier for researchers to conduct field studies. These compact devices can be used in remote locations, allowing for real-time analysis of samples. This capability has transformed many research areas, enabling faster decision-making and more efficient data collection.In summary, spectrometers (光谱仪) are invaluable tools across various disciplines. Their ability to analyze light and matter has revolutionized our understanding of the natural world. As technology continues to advance, the applications of spectrometers (光谱仪) will likely expand even further, paving the way for new discoveries and innovations. Scientists rely on these instruments not only to explore the fundamental aspects of chemistry and physics but also to address pressing global challenges such as climate change and pollution. The future of scientific inquiry is undoubtedly intertwined with the continued development and utilization of spectrometers (光谱仪).
光谱仪是用于分析光和物质特性的基本仪器,广泛应用于各个科学领域。这些设备测量光的光谱,使科学家能够根据其独特的光谱特征识别和定量不同的物质。光谱仪的基本原理是,每种元素在特定波长下发射或吸收光。通过检查这些波长,研究人员可以深入了解材料的化学成分和物理性质。在化学中,光谱仪在识别化合物和理解其结构方面发挥着至关重要的作用。例如,在质谱法中,一种类型的光谱仪,分子被电离,然后根据其质量与电荷比进行分离。这使得化学家能够确定物质的分子量并推断其结构。同样,红外光谱仪可以提供关于分子振动的信息,有助于识别有机化合物中的功能团。在天文学领域,光谱仪用于分析来自恒星和星系的光。通过研究这些天体产生的光谱线,天文学家可以推断它们的成分、温度、密度和运动。例如,观测到的光谱线中的多普勒效应可以指示一个物体是向地球移动还是远离地球,从而提供有关宇宙膨胀的宝贵信息。环境科学也受益于光谱仪的使用。它们被用于监测空气、水和土壤中的污染物。通过分析从样本中收集的光谱数据,科学家可以检测有害物质并评估其浓度。这些信息对于环境保护和公共健康倡议至关重要。此外,技术的进步导致了便携式光谱仪的发展,使研究人员更容易进行实地研究。这些紧凑型设备可以在偏远地区使用,允许实时分析样本。这一能力改变了许多研究领域,使更快的决策和更高效的数据收集成为可能。总之,光谱仪在各个学科中都是无价的工具。它们分析光和物质的能力彻底改变了我们对自然世界的理解。随着技术的不断进步,光谱仪的应用可能会进一步扩展,为新的发现和创新铺平道路。科学家不仅依赖这些仪器探索化学和物理的基本方面,还解决气候变化和污染等紧迫的全球挑战。科学探究的未来无疑与光谱仪的持续发展和利用息息相关。