anticodon
简明释义
n. 反密码子
英英释义
An anticodon is a sequence of three nucleotides in transfer RNA (tRNA) that corresponds to a complementary codon in messenger RNA (mRNA). | 反密码子是转运RNA(tRNA)中的一个由三个核苷酸组成的序列,它与信使RNA(mRNA)中的互补密码子相对应。 |
单词用法
tRNA反密码子 | |
反密码子环 | |
反密码子-密码子的配对 | |
反密码子序列 |
同义词
tRNA反密码子 | The tRNA anticodon pairs with the mRNA codon during translation. | 在翻译过程中,tRNA反密码子与mRNA密码子配对。 | |
密码子互补 | Each anticodon is specific to a corresponding codon on the mRNA strand. | 每个反密码子对应于mRNA链上的一个特定密码子。 |
反义词
密码子 | The codon sequence determines which amino acid is added during protein synthesis. | 密码子序列决定在蛋白质合成过程中添加哪个氨基酸。 |
例句
1.It also carries a specific nucleotide sequence, the anticodon.
它还带有特定的核苷酸序列即反密码子。
2.It also carries a specific nucleotide sequence, the anticodon.
它还带有特定的核苷酸序列即反密码子。
3.During protein synthesis, the tRNA molecule pairs its amino acid with the corresponding mRNA codon through its anticodon.
在蛋白质合成过程中,tRNA分子通过其反密码子将氨基酸与相应的mRNA密码子配对。
4.In genetic engineering, scientists can modify the anticodon to produce desired traits in organisms.
在基因工程中,科学家可以修改反密码子以在生物体中产生所需的特征。
5.Each tRNA has a unique anticodon that matches a specific mRNA codon.
每个tRNA都有一个独特的反密码子,与特定的mRNA密码子匹配。
6.Mutations in the DNA can lead to changes in the anticodon, potentially resulting in dysfunctional proteins.
DNA中的突变可能导致反密码子的变化,从而可能导致功能失常的蛋白质。
7.The anticodon on the tRNA ensures that the correct amino acid is added to the growing polypeptide chain.
tRNA上的反密码子确保正确的氨基酸被添加到正在增长的多肽链中。
作文
The process of protein synthesis is a remarkable journey that involves various components working together in harmony. One of the key players in this intricate process is the transfer RNA, or tRNA. Each tRNA molecule carries a specific amino acid and possesses a unique sequence of nucleotides known as an anticodon. The anticodon is a crucial part of the tRNA structure because it is responsible for recognizing the corresponding codon on the messenger RNA (mRNA) during translation. This interaction ensures that the correct amino acid is added to the growing polypeptide chain, ultimately leading to the formation of functional proteins.To understand the significance of the anticodon, we must first explore the role of codons in mRNA. Codons are sequences of three nucleotides that code for specific amino acids. For example, the codon AUG codes for methionine, which is also the start codon for protein synthesis. When ribosomes read the mRNA, they match each codon with its corresponding tRNA, which carries the appropriate amino acid. This matching process is facilitated by the anticodon on the tRNA.The anticodon consists of three nucleotides that are complementary to the mRNA codon. For instance, if the mRNA codon is UAC, the corresponding anticodon on the tRNA would be AUG. This base pairing is essential for ensuring that the genetic code is accurately translated into proteins. If there were any errors in this process, it could lead to the production of dysfunctional proteins, which may cause various diseases or malfunctions within the organism.Moreover, the specificity of the anticodon allows for the diversity of proteins that can be synthesized. With 64 possible codons but only 20 standard amino acids, some amino acids are encoded by multiple codons. This redundancy means that certain anticodons can pair with more than one codon, providing a level of flexibility in protein synthesis. This phenomenon is known as 'wobble' pairing, where the third nucleotide of the codon and anticodon can sometimes form non-standard base pairs, allowing for efficient use of tRNA molecules.In addition to its role in translation, the study of anticodons has significant implications in biotechnology and medicine. For instance, researchers can design synthetic tRNAs with modified anticodons to incorporate non-standard amino acids into proteins. This technique can be used to create proteins with novel functions or enhanced properties, opening new avenues for drug development and therapeutic interventions.In conclusion, the anticodon is a vital component of the translation process in protein synthesis. Its ability to pair with codons on mRNA ensures that the correct amino acids are incorporated into growing polypeptide chains, leading to the formation of functional proteins. Understanding the role of the anticodon not only sheds light on the fundamental processes of life but also paves the way for advancements in science and medicine. As we continue to explore the complexities of molecular biology, the significance of the anticodon and its interactions will undoubtedly remain a focal point of research and discovery.
蛋白质合成的过程是一个非凡的旅程,涉及各种组成部分和谐地共同工作。在这个复杂的过程中,转运RNA(tRNA)是关键参与者之一。每个tRNA分子携带特定的氨基酸,并具有独特的核苷酸序列,称为反密码子。反密码子是tRNA结构中至关重要的一部分,因为它负责在翻译过程中识别信使RNA(mRNA)上的相应密码子。这一相互作用确保了正确的氨基酸被添加到不断增长的多肽链中,最终导致功能性蛋白质的形成。要理解反密码子的重要性,我们必须首先探索密码子在mRNA中的作用。密码子是编码特定氨基酸的三个核苷酸序列。例如,密码子AUG编码甲硫氨酸,这也是蛋白质合成的起始密码子。当核糖体读取mRNA时,它们将每个密码子与其相应的tRNA进行匹配,而tRNA则携带适当的氨基酸。这个匹配过程通过tRNA上的反密码子来促进。反密码子由三个核苷酸组成,与mRNA密码子互补。例如,如果mRNA密码子是UAC,则tRNA上的相应反密码子将是AUG。这种碱基配对对于确保遗传密码准确翻译为蛋白质至关重要。如果这个过程出现任何错误,可能会导致功能失常的蛋白质的产生,从而引发各种疾病或生物体内的功能障碍。此外,反密码子的特异性使得可以合成多样化的蛋白质。由于有64种可能的密码子,但只有20种标准氨基酸,因此某些氨基酸由多个密码子编码。这种冗余性意味着某些反密码子可以与不止一种密码子配对,从而在蛋白质合成中提供一定程度的灵活性。这种现象被称为“摆动”配对,其中密码子和反密码子的第三个核苷酸有时可以形成非常规的碱基对,从而高效利用tRNA分子。除了在翻译中的作用外,研究反密码子在生物技术和医学中也具有重要意义。例如,研究人员可以设计具有修饰过的反密码子的合成tRNA,以将非标准氨基酸纳入蛋白质中。这项技术可用于创建具有新功能或增强特性的蛋白质,为药物开发和治疗干预开辟了新的途径。总之,反密码子是蛋白质合成翻译过程中的重要组成部分。它与mRNA上的密码子配对的能力确保了正确的氨基酸被纳入不断增长的多肽链中,从而形成功能性蛋白质。理解反密码子的作用不仅揭示了生命的基本过程,还为科学和医学的进步铺平了道路。随着我们继续探索分子生物学的复杂性,反密码子及其相互作用的重要性无疑将继续成为研究和发现的焦点。