angstroms

简明释义

[ˈæŋstrəmz][ˈæŋstrəms]

英英释义

A unit of length equal to one ten-billionth of a meter, commonly used to measure wavelengths of light and atomic scales.

一种长度单位,等于一亿分之一米,通常用于测量光的波长和原子尺度。

单词用法

measured in angstroms

以埃(angstroms)为单位测量

wavelength of light in angstroms

光的波长以埃(angstroms)计

angstroms to nanometers

埃(angstroms)转换为纳米(nanometers)

atomic scale in angstroms

在原子尺度上以埃(angstroms)表示

同义词

nanometer

纳米

The wavelength of visible light is typically between 400 to 700 nanometers.

可见光的波长通常在400到700纳米之间。

micrometer

微米

A micrometer is often used in precision engineering to measure small distances.

微米通常用于精密工程中测量小距离。

picometer

皮米

The size of atoms is on the order of picometers.

原子的大小在皮米级别。

反义词

miles

英里

The distance between cities can be measured in miles.

城市之间的距离可以用英里来测量。

kilometers

公里

A marathon is approximately 42 kilometers long.

马拉松的长度大约是42公里。

例句

1.Electromagnetic radiation that has a wavelength in the range from about 4,000 (violet) to about 7,700 (red) angstroms and may be perceived by the normal unaided human eye.

光,可见光:波长在4,000埃(紫外线)或7,700埃(红外线)之间的电磁辐射,能被人的普通肉眼看见。

2.The phase difference accurate to 0.1 degree can be obtained. The most striking application will be the measuring of film thickness of the order of Angstroms, and thus making the…

精度可达0.1度以内,这将出观对于A数量级薄片厚度的测量和控制生长的美好前景。

3.The Bohr radius, for hydrogen is 0.529 angstroms.

波尔半径,对于氢原子来说是0。529埃。

4.This effect is particularly important for leds since the emitted spectral width is several hundred angstroms.

这种效应对于发光二极体来说是特别重要的,因为发光二极体所发射的光谱带宽可达几百埃。

5.He says the team does now have a data set down to a resolution of 3 angstroms and is working on solving this structure.

他说他们的小组现在有一组3埃分辨率的数据,并且正在破解这一结构。

6.And an atomic volume, it's going to be on the order of 1 angstroms cubed.

一个原子体积大约是,一个埃的三次方。

7.The phase difference accurate to 0.1 degree can be obtained. The most striking application will be the measuring of film thickness of the order of Angstroms, and thus making the…

精度可达0.1度以内,这将出观对于A数量级薄片厚度的测量和控制生长的美好前景。

8.This effect is particularly important for leds since the emitted spectral width is several hundred angstroms .

这种效应对于发光二极管来说是特别重要的,因为发光二极管所发射的光谱带宽可达几百埃。

9.The phase difference accurate to 0.1 degree can be obtained. The most striking application will be the measuring of film thickness of the order of Angstroms, and thus maki…

精度可达0.1度以内,这将出观对于A数量级薄片厚度的测量和控制生长的美好前景。

10.A typical atomic radius is on the order of a few angstroms.

典型的原子半径大约在几个的范围内。

11.The bond length in a carbon-carbon single bond is about 154 angstroms.

碳-碳单键的键长大约为154

12.The wavelength of visible light is typically between 4000 and 7000 angstroms.

可见光的波长通常在4000到7000之间。

13.In semiconductor physics, the thickness of layers can be measured in angstroms.

在半导体物理中,层的厚度可以用来测量。

14.X-ray diffraction can measure distances on the scale of angstroms.

X射线衍射可以测量在级别的距离。

作文

The concept of the angstroms (埃) is fundamental in the fields of physics and chemistry, particularly when discussing atomic and molecular scales. An angstrom is a unit of measurement that equals one ten-billionth of a meter (10^-10 meters). This small scale is crucial for scientists who study the structure of atoms and molecules, as many of these particles are on the order of angstroms. For instance, the diameter of a hydrogen atom is approximately 0.53 angstroms, which highlights just how tiny atomic structures are compared to everyday objects we encounter in our lives.Understanding angstroms is essential for various scientific disciplines. In materials science, researchers often measure the spacing between atoms in a crystal lattice using angstroms. This allows them to understand the properties of materials at a fundamental level, such as conductivity, strength, and reactivity. For example, the distance between atoms in a diamond structure is about 1.54 angstroms, which contributes to its hardness and brilliance. In biology, the importance of angstroms becomes evident when examining the structures of proteins and DNA. The double helix structure of DNA has a width of about 20 angstroms, and the base pairs that make up the rungs of the helix are separated by approximately 3.4 angstroms. Understanding these measurements helps biologists comprehend how genetic information is stored and replicated within living organisms.Moreover, in the field of spectroscopy, angstroms are used to describe wavelengths of light. For example, ultraviolet light has wavelengths ranging from about 10 to 400 angstroms. This is important in understanding how different substances absorb and emit light, which can be crucial for applications such as identifying chemical compositions or studying astronomical phenomena.The use of angstroms extends beyond pure science; it has practical implications in technology and engineering. Nanotechnology, for example, often deals with materials and devices at the nanoscale, where dimensions are measured in angstroms. Engineers working in this field must have a solid grasp of how materials behave at such small scales to innovate and create new technologies, such as more efficient solar cells or advanced medical devices.In summary, the angstrom serves as a critical unit of measurement that allows scientists and engineers to explore and manipulate the microscopic world. Whether it’s in understanding the intricacies of molecular structures, the properties of materials, or the behavior of light, angstroms provide a bridge between theoretical concepts and practical applications. As technology advances and our understanding of the atomic world deepens, the relevance of angstroms will continue to grow, making it an essential term in the scientific lexicon.

“埃”这个概念在物理学和化学领域中是基础性的,特别是在讨论原子和分子尺度时。一个“埃”是一个长度单位,等于十亿分之一米(10^-10米)。这个小尺度对研究原子和分子结构的科学家至关重要,因为许多这些粒子的大小都在“埃”的数量级。例如,氢原子的直径约为0.53“埃”,这突显了原子结构与我们日常生活中所遇到的物体之间的微小差异。理解“埃”对各种科学学科都是必不可少的。在材料科学中,研究人员通常使用“埃”来测量晶格中原子之间的间距。这使他们能够从根本上理解材料的性质,例如导电性、强度和反应性。例如,钻石结构中原子之间的距离约为1.54“埃”,这有助于解释其硬度和光辉。在生物学中,“埃”的重要性在检查蛋白质和DNA结构时变得显而易见。DNA的双螺旋结构宽约20“埃”,构成螺旋梯子的碱基对之间的距离约为3.4“埃”。理解这些测量值帮助生物学家理解遗传信息如何在生物体内存储和复制。此外,在光谱学领域,“埃”用于描述光的波长。例如,紫外光的波长范围约为10到400“埃”。这对于理解不同物质如何吸收和发射光至关重要,这对于识别化学成分或研究天文现象等应用至关重要。“埃”的使用超越了纯科学,它在技术和工程中具有实际意义。例如,纳米技术通常处理在纳米尺度上的材料和设备,其尺寸以“埃”为单位进行测量。在这一领域工作的工程师必须牢牢掌握材料在如此小尺度下的行为,以创新和创造新技术,例如更高效的太阳能电池或先进的医疗设备。总之,“埃”作为一个关键的测量单位,使科学家和工程师能够探索和操纵微观世界。无论是在理解分子结构的复杂性、材料的性质,还是光的行为方面,“埃”都为理论概念与实际应用之间架起了一座桥梁。随着技术的进步和我们对原子世界理解的加深,“埃”的相关性将继续增长,使其成为科学词汇中不可或缺的术语。