thermodynamic

简明释义

[ˌθɜːməʊdaɪˈnæmɪk][ˌθɜːrmoʊdaɪˈnæmɪk]

adj. 热力学的;使用热动力的

英英释义

Relating to the branch of physics that deals with the relationships between heat and other forms of energy.

与研究热量与其他形式的能量之间关系的物理学分支相关的。

单词用法

thermodynamic system

热力学体系;热力学系统

thermodynamic equilibrium

[物]热力学平衡

同义词

thermal

热的

thermal equilibrium

热平衡

反义词

adiabatic

绝热的

In an adiabatic process, no heat is transferred to or from the system.

在绝热过程中,系统没有热量转移。

isothermal

等温的

Isothermal processes occur at a constant temperature.

等温过程在恒定温度下发生。

例句

1.The economic analysis of the thermodynamic system is one of important studies in this thesis.

火电厂热力系统的经济性分析是论文研究的重点之一。

2.Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment.

希腊北部雹暴:天气形势和热力环境。

3.Thermodynamic entropy draws all chemical reactions down to their minimal energy level.

热力学的熵变将所有化学反应拉到它们的最低能量值[5]。

4.On the thermodynamic framework e've been working with all term.

在热力学的框架下,我们已经处理过这些问题。

5.And that's the zeroth law thermodynamic.

这就是热力学第零定律。

6.Since black holes do not classically emit radiation, the thermodynamic viewpoint was simply an analogy.

既然黑洞不是经典地发出辐射,熵的观点只是一个类推。

7.The thermodynamic 热力学 efficiency of a power plant is a critical factor in its design.

发电厂的热力学效率是其设计中的一个关键因素。

8.A refrigerator operates based on thermodynamic 热力学 principles to transfer heat from inside to outside.

冰箱基于热力学原理将内部的热量转移到外部。

9.The laws of thermodynamic 热力学 govern how heat and work interact in physical systems.

热力学定律支配着热量和功在物理系统中的相互作用。

10.In a thermodynamic 热力学 process, energy can be converted from one form to another.

在热力学过程中,能量可以从一种形式转换为另一种形式。

11.The study of thermodynamic 热力学 systems is essential for understanding engine efficiency.

热力学系统的研究对于理解引擎效率至关重要。

作文

Thermodynamics is a branch of physics that deals with the relationships between heat, work, temperature, and energy. It plays a crucial role in understanding how energy is transferred and transformed in various systems. One of the fundamental concepts in this field is the laws of thermodynamics, which describe how energy behaves in different situations. The first law, often referred to as the law of energy conservation, states that energy cannot be created or destroyed, only transformed from one form to another. This principle is essential in many scientific and engineering applications. In daily life, we encounter numerous examples of thermodynamic (热力学) principles. For instance, when we boil water, the heat energy from the stove is transferred to the water, causing its temperature to rise until it reaches the boiling point. This process involves the conversion of thermal energy into kinetic energy as the water molecules move faster and eventually turn into steam. Understanding this process through the lens of thermodynamic (热力学) principles allows us to explain why certain materials heat up faster than others and how heat engines operate. Another important concept in thermodynamic (热力学) studies is entropy, which measures the degree of disorder or randomness in a system. According to the second law of thermodynamics, the total entropy of an isolated system can never decrease over time. This means that natural processes tend to move towards a state of greater disorder. For example, if you mix hot and cold water, the resulting mixture will eventually reach a uniform temperature, illustrating how entropy increases as energy spreads out. The applications of thermodynamic (热力学) principles extend beyond simple heating and cooling processes. In engineering, these principles are vital for designing efficient engines, refrigerators, and air conditioning systems. Engineers use thermodynamic (热力学) calculations to optimize these systems, ensuring they operate effectively while minimizing energy loss. Additionally, the study of thermodynamic (热力学) cycles, such as the Carnot cycle, provides insights into the maximum possible efficiency of heat engines, guiding innovations in energy technology. Moreover, thermodynamic (热力学) principles are also applied in chemistry, especially in understanding chemical reactions. The concept of Gibbs free energy, for instance, helps predict whether a reaction will occur spontaneously under certain conditions. By analyzing the thermodynamic (热力学) properties of reactants and products, chemists can determine the feasibility of various chemical processes, paving the way for advancements in materials science and pharmaceuticals. In conclusion, thermodynamic (热力学) principles are foundational to many scientific fields and everyday phenomena. From the functioning of heat engines to the spontaneity of chemical reactions, understanding thermodynamic (热力学) concepts enhances our comprehension of the natural world. As we continue to explore and innovate in science and technology, the significance of thermodynamic (热力学) principles will undoubtedly remain at the forefront of our endeavors, guiding us towards more efficient and sustainable solutions.

热力学是物理学的一个分支,研究热、功、温度和能量之间的关系。它在理解能量如何在各种系统中转移和转化方面起着至关重要的作用。该领域的基本概念之一是热力学定律,它描述了能量在不同情况下的行为。第一定律,通常称为能量守恒定律,指出能量不能被创造或毁灭,只能从一种形式转化为另一种形式。这个原理在许多科学和工程应用中是必不可少的。在日常生活中,我们遇到许多热力学(thermodynamic)原理的例子。例如,当我们煮水时,炉子上的热能传递给水,使其温度上升,直到达到沸点。这个过程涉及热能转化为动能,因为水分子运动得更快,最终变成蒸汽。通过热力学(thermodynamic)原理理解这个过程,让我们能够解释为什么某些材料加热得比其他材料快,以及热机是如何运作的。热力学(thermodynamic)研究中的另一个重要概念是熵,它衡量系统的无序程度或随机性。根据热力学第二定律,孤立系统的总熵随着时间的推移永远不会减少。这意味着自然过程趋向于更大的无序状态。例如,如果你将热水和冷水混合,最终得到的混合物将达到均匀的温度,说明能量扩散时熵增加。热力学(thermodynamic)原理的应用不仅限于简单的加热和冷却过程。在工程学中,这些原理对于设计高效的发动机、冰箱和空调系统至关重要。工程师使用热力学(thermodynamic)计算来优化这些系统,确保它们有效运行,同时最小化能量损失。此外,热力学(thermodynamic)循环的研究,例如卡诺循环,提供了关于热机可能达到的最大效率的见解,指导能源技术的创新。此外,热力学(thermodynamic)原理还应用于化学,特别是在理解化学反应方面。吉布斯自由能的概念有助于预测在特定条件下反应是否会自发发生。通过分析反应物和产物的热力学(thermodynamic)性质,化学家可以确定各种化学过程的可行性,为材料科学和制药行业的进步铺平道路。总之,热力学(thermodynamic)原理是许多科学领域和日常现象的基础。从热机的运作到化学反应的自发性,理解热力学(thermodynamic)概念增强了我们对自然世界的理解。随着我们继续在科学和技术领域探索和创新,热力学(thermodynamic)原理的重要性无疑将始终处于我们努力的前沿,指导我们走向更高效和可持续的解决方案。