baryonic
简明释义
adj. 重子的
英英释义
Relating to or consisting of baryons, which are subatomic particles such as protons and neutrons that make up atomic nuclei. | 与重子相关或由重子组成的,重子是构成原子核的亚原子粒子,如质子和中子。 |
单词用法
重子声学振荡 | |
重子反馈 | |
重子暗物质 | |
重子质量 | |
重子相互作用 | |
重子成分 |
同义词
反义词
例句
1.The results show that the existence of non-baryonic dark matter background influences seriousely the instability of a gravitational system.
结果显示,非重子暗物质背景的存在将对引力系统的不稳定性产生重要影响。
2.Over the years, we've pretty much ruled out all sorts of baryonic dark matter possibilities like brown dwarfs or black holes.
多年来,我们常常将存在各种重子暗物质(如:褐矮星或黑洞)的可能性排除在外。
3.The linear combinations of baryonic, leptonic and electromagnetic currents are related to weak neutral currents, which fit all the present neutral current experiments.
将重子流、轻子流和电流的线性组合和中性弱流联系起来,可以拟合现有的全部中性流实验资料。
4.Astronomers have long speculated that the missing baryonic mass might eventually be discovered in intergalactic space or as some large population of galaxies that are difficult to detect.
天文学家长期以来都在推测,最终可能会在星际空间或者是在难以探测的大量星系中发现丢失的重子质量。
5.These galaxies may constitute an answer to the long-standing puzzle of the missing baryonic mass in the universe.
这些星系可能为宇宙中长期存在的缺少重子质量这一谜题提供了答案。
6.Scientists call them baryonic matters, as protons and neutrons are called baryons in sub-atomic particles.
科学家们把它们称为“重子物质”,因为质子和中子在亚原子粒子中被称为“重子”。
7.Dark matter: this generally refers to "exotic" non-baryonic matter that interacts only weakly with ordinary matter.
暗物质:这一般是指“外来的”非重子物质,与普通物质只有较弱的的相互作用。
8.The linear combinations of baryonic, leptonic and electromagnetic currents are related to weak neutral currents, which fit all the present neutral current experiments.
将重子流、轻子流和电流的线性组合和中性弱流联系起来,可以拟合现有的全部中性流实验资料。
9.Scientists call ordinary matter "baryonic matter" because protons and neutrons are subatomic particles called baryons.
科学家把这些常见物统称为“重物质”,因为质子和中子都属于亚原子结构的重子。
10.The distribution of baryonic 重子 matter can influence the gravitational forces in a galaxy.
在星系中,重子 baryonic物质的分布会影响引力。
11.Research on baryonic 重子 acoustic oscillations helps us learn about the early universe.
对重子 baryonic声学振荡的研究帮助我们了解早期宇宙。
12.The universe is primarily composed of baryonic 重子 matter, which includes stars, planets, and living organisms.
宇宙主要由重子 baryonic物质组成,包括星星、行星和生物。
13.Scientists are studying the baryonic 重子 components of galaxies to understand their formation.
科学家们正在研究星系的重子 baryonic成分,以了解它们的形成。
14.In astrophysics, baryonic 重子 matter is often contrasted with dark matter.
在天体物理学中,重子 baryonic物质通常与暗物质进行对比。
作文
In the vast realm of astrophysics, the term baryonic refers to matter that is composed of baryons, which are subatomic particles such as protons and neutrons. These particles make up the atoms that constitute ordinary matter, including stars, planets, and living organisms. Understanding baryonic matter is crucial for comprehending the universe's composition and evolution. In contrast to dark matter and dark energy, which dominate the universe's mass-energy content but remain elusive in terms of direct detection, baryonic matter is the tangible substance we can observe and study directly. The significance of baryonic matter extends beyond mere physical existence; it plays a vital role in the formation and lifecycle of galaxies. When the universe was born approximately 13.8 billion years ago, it was primarily composed of hydrogen and helium, the simplest baryonic elements. As these elements coalesced under gravity, they formed the first stars and galaxies, marking the beginning of cosmic structure formation. Over time, through processes like nuclear fusion within stars, heavier elements were created, enriching the interstellar medium with baryonic material essential for planet formation and the emergence of life. Moreover, the study of baryonic matter allows scientists to explore fundamental questions about the nature of the universe. For instance, researchers investigate how baryonic matter interacts with dark matter, which does not emit light or energy, making it invisible to current observational tools. The interplay between these two forms of matter is a subject of intense study, as it could provide insights into the universe's overall structure and fate. In recent years, advancements in technology have enabled astronomers to map the distribution of baryonic matter across the cosmos. Observations from powerful telescopes have revealed intricate patterns of gas and dust, highlighting how baryonic matter is not uniformly distributed but rather clumped in galaxies and clusters. This mapping is essential for understanding galaxy formation and the evolution of cosmic structures over time. Furthermore, the implications of baryonic matter extend to cosmology, where it influences the cosmic microwave background radiation, the afterglow of the Big Bang. The density of baryonic matter affects the rate of expansion of the universe and its ultimate fate. By studying the properties of baryonic matter, scientists can refine their models of cosmic evolution and gain a deeper understanding of the fundamental forces at play in the universe. In conclusion, the term baryonic encapsulates a fundamental aspect of our universe, representing the matter that constitutes stars, planets, and life itself. Its study is not only essential for understanding the physical universe but also for addressing profound questions about our existence and the nature of reality. As we continue to explore the cosmos, the significance of baryonic matter will undoubtedly remain a central theme in our quest for knowledge about the universe we inhabit.
在广阔的天体物理学领域,术语baryonic指的是由重子组成的物质,重子是亚原子粒子,如质子和中子。这些粒子构成了普通物质的原子,包括恒星、行星和生物体。理解baryonic物质对于理解宇宙的组成和演化至关重要。与主导宇宙质量-能量内容但在直接探测方面仍然难以捉摸的暗物质和暗能量不同,baryonic物质是我们可以直接观察和研究的有形物质。baryonic物质的重要性不仅仅在于其物理存在;它在星系的形成和生命周期中发挥着至关重要的作用。当宇宙大约138亿年前诞生时,它主要由氢和氦这两种最简单的重子元素组成。随着这些元素在引力下聚集,它们形成了第一批恒星和星系,标志着宇宙结构形成的开始。随着时间的推移,通过恒星内部的核聚变等过程,较重的元素被创造出来,丰富了星际介质,提供了baryonic材料,这对行星形成和生命的出现至关重要。此外,对baryonic物质的研究使科学家能够探讨关于宇宙本质的基本问题。例如,研究人员调查baryonic物质如何与暗物质相互作用,后者不发光或释放能量,使其对当前的观测工具不可见。这两种物质形式之间的相互作用是一个激烈研究的主题,因为它可能提供关于宇宙整体结构和命运的见解。近年来,技术的进步使天文学家能够绘制baryonic物质在宇宙中的分布。来自强大望远镜的观测揭示了气体和尘埃的复杂模式,突显了baryonic物质并非均匀分布,而是聚集在星系和星团中。这种绘图对于理解星系的形成以及宇宙结构随时间演变至关重要。此外,baryonic物质的影响延伸到宇宙学,它影响宇宙微波背景辐射,即大爆炸的余辉。baryonic物质的密度影响宇宙的膨胀速度及其最终命运。通过研究baryonic物质的性质,科学家可以完善他们的宇宙演化模型,并更深入地理解宇宙中起作用的基本力量。总之,术语baryonic概括了我们宇宙的一个基本方面,代表了构成恒星、行星和生命本身的物质。它的研究不仅对于理解物理宇宙至关重要,而且对于解决关于我们存在和现实本质的深刻问题。在我们继续探索宇宙的过程中,baryonic物质的重要性无疑将继续成为我们对所居住宇宙知识追求的核心主题。