interfacial
简明释义
英[ˌɪntəˈfeɪʃ(ə)l]美[ˌɪntərˈfeɪʃəl]
adj. 界面的
英英释义
Relating to or situated on the interface between two different substances or phases. | 与两种不同物质或相之间的界面相关或位于其上的。 |
单词用法
[物]界面张力 | |
[物]界面聚合 |
同义词
界面 | 界面张力 | ||
表面 | 表面能 | ||
边界 | 边界层 |
反义词
例句
1.Based on Linear interfacial Fracture Mechanics, a new welding joint model-multi layered interfacial model is proposed in this paper.
基于线性界面断裂力学,提出了焊接接头的新模型—多层模型。
2.We have measured the oil-water interfacial tension of the complex drive in the different condition using interfacial tensiometer.
使用旋滴界面张力仪,测定了不同情况下的复合驱模拟采出液的油水界面张力;
3.Each half reaction responds to the interfacial potential at the corresponding electrode.
每个半反应都与相应电极上的界面电势差相呼应。
4.This includes some processing measurements for improving interfacial stress and defects.
阐述了改善界面热应力和界面缺陷的工艺措施;
5.Chorogram of interfacial tension is studied.
研究了界面张力等值图。
6.These interfacial reaction products are mainly from the reaction between the binder and the melted magnesium.
这些界面反应物主要来自挤压铸造时粘结剂与熔融的镁反应。
7.Bending strength, compressive strength, interfacial bond strength and frost-resistance were also studied and analyzed.
并对其抗压、抗折、新老界面粘结强度及抗冻性等进行了实验研究。
8.Surfactant can lower interfacial tension between oil and water and alter rocky wettability, so it will be used extensively.
表面活性剂能降低油水界面张力,改变岩石的润湿性,所以在三次采油中有着广阔的发展前途。
9.If you suspect that you might be in an interfacial marriage, don't be ashamed.
如果你猜想或许自己也会和异国人结婚,不要感到惭愧。
10.The interfacial reaction between the two chemicals produced unexpected results.
两种化学物质之间的界面反应产生了意想不到的结果。
11.Understanding interfacial tension is crucial in the formulation of emulsions.
理解界面张力对于乳液的配方至关重要。
12.The study focused on the interfacial properties of the material used in the coating.
该研究集中在涂层材料的界面特性上。
13.Researchers are investigating the interfacial dynamics in nanocomposite materials.
研究人员正在研究纳米复合材料中的界面动态。
14.The interfacial adhesion between the layers is critical for the performance of the device.
层间的界面粘附对于设备的性能至关重要。
作文
The concept of interfacial interactions is fundamental in various scientific fields, including chemistry, physics, and materials science. Understanding these interactions can lead to significant advancements in technology and industry. For instance, in the realm of nanotechnology, the interfacial properties between different materials can dictate the overall performance of nanocomposites. When two materials come into contact, the interface between them can exhibit unique characteristics that differ from the bulk properties of each material. This interfacial zone plays a crucial role in determining the mechanical strength, thermal stability, and electrical conductivity of the composite material.In addition to nanotechnology, the study of interfacial phenomena is essential in the field of biomedicine. For example, when developing drug delivery systems, the interfacial interactions between the drug, the carrier, and biological tissues can significantly affect the efficiency of the treatment. Researchers strive to optimize these interfacial interactions to enhance drug absorption and minimize side effects. The ability to manipulate interfacial properties can lead to more effective therapies and improved patient outcomes.Moreover, the interfacial tension between liquids is a critical factor in many industrial processes, such as emulsification and foaming. In the food industry, for example, the stability of emulsions, like mayonnaise or salad dressings, depends on the interfacial tension between oil and water. Surfactants are often added to reduce this tension, allowing for a stable mixture. Understanding the interfacial dynamics involved can help food scientists create better products with desirable textures and flavors.In environmental science, interfacial interactions also play a vital role in understanding pollutant behavior in soils and water bodies. The interfacial properties between contaminants and soil particles can influence the mobility and bioavailability of pollutants. By studying these interactions, scientists can develop more effective remediation strategies to clean up contaminated sites and protect ecosystems.In conclusion, the term interfacial encompasses a wide range of interactions that occur at the boundary between different phases, whether they be solid, liquid, or gas. Its implications stretch across various disciplines, highlighting the importance of understanding these interactions for technological advancement, medical improvements, food production, and environmental protection. As research continues to evolve, the significance of interfacial phenomena will undoubtedly become even more pronounced, leading to innovative solutions to complex challenges we face today.
“界面”的概念在化学、物理和材料科学等多个科学领域中是基础性的。理解这些相互作用可以推动技术和工业的重大进步。例如,在纳米技术领域,不同材料之间的“界面”特性可以决定纳米复合材料的整体性能。当两种材料接触时,它们之间的界面可能会表现出与每种材料的体积特性不同的独特特性。这个“界面”区域在决定复合材料的机械强度、热稳定性和电导率方面起着至关重要的作用。除了纳米技术外,研究“界面”现象在生物医学领域也至关重要。例如,在开发药物递送系统时,药物、载体和生物组织之间的“界面”相互作用可以显著影响治疗的有效性。研究人员努力优化这些“界面”相互作用,以增强药物吸收并最小化副作用。操控“界面”特性的能力可以导致更有效的疗法和改善的患者结果。此外,液体之间的“界面”张力在许多工业过程中也是关键因素,例如乳化和发泡。在食品工业中,例如,乳液(如蛋黄酱或沙拉酱)的稳定性依赖于油和水之间的“界面”张力。通常添加表面活性剂以降低这种张力,从而允许形成稳定的混合物。理解涉及的“界面”动态可以帮助食品科学家创造出具有理想质地和风味的更好产品。在环境科学中,“界面”相互作用在理解污染物在土壤和水体中的行为方面也发挥着重要作用。污染物与土壤颗粒之间的“界面”特性可以影响污染物的流动性和生物可利用性。通过研究这些相互作用,科学家可以开发出更有效的修复策略,以清理受污染的场所并保护生态系统。总之,术语“界面”涵盖了发生在不同相之间的边界上的各种相互作用,无论它们是固体、液体还是气体。其影响跨越多个学科,突显了理解这些相互作用对于技术进步、医疗改善、食品生产和环境保护的重要性。随着研究的不断发展,“界面”现象的重要性无疑会变得更加突出,从而为我们今天面临的复杂挑战提供创新解决方案。