anoxic
简明释义
adj. 缺氧的
英英释义
Relating to or denoting an environment that is deficient in oxygen. | 与缺乏氧气的环境相关或表示。 |
单词用法
缺氧水域 | |
缺氧沉积物 | |
缺氧事件 | |
缺氧压力 | |
缺氧气氛 | |
缺氧呼吸 | |
缺氧降解 | |
缺氧代谢 | |
缺氧生态系统 | |
缺氧阈值 |
同义词
缺氧的 | 由于过量的营养物质流失,湖泊变得缺氧。 | ||
缺氧的 | 厌氧细菌在缺氧环境中繁衍生息。 | ||
厌氧的 | 缺氧水域可能导致鱼类死亡。 |
反义词
有氧的 | The aerobic process requires oxygen to function effectively. | 好氧过程需要氧气才能有效进行。 | |
好氧的 | Many aerobic organisms thrive in environments rich in oxygen. | 许多好氧生物在富含氧气的环境中繁荣生长。 |
例句
1.Compared with anaerobic-anoxic-oxic continuous process, the process in this paper will be reduced by 20% in volume and 30.8% in power consumption.
与厌氧-缺氧-好氧-缺氧连续式短程生物脱氮工艺比较,反应器的总体积可以缩小20%,曝气动力消耗可以节省30.8%。
2.Seasonable dehumidify, alleviate low pressure is anoxic state.
及时除湿,并缓解低压缺氧的状况。
3.Objective and Method: To study the effects and the mechanisms of Danshen's hydrosoluble compositions on the ischemic and anoxic central nerve system.
目的与方法:探讨丹参水溶性成分对中枢神经系统缺氧保护的作用和机理。
4.In the article do the experimental research on its action of anti-tired, anoxic-resistance, and clearing away the free oxygen.
我们就其抗疲劳,耐缺氧,清除氧自由基作用进行实验研究。
5.Putting the carbon source in the anoxic reactor was in favor of denitrifying but did harm to anoxic dephosphorus.
将外碳源投加在缺氧段,只能优先支持反硝化脱氮反应,而对缺氧吸磷有抑制作用。
6.In the anoxic phase, without adding external carbon source, internal carbon source is used for denitrification.
在缺氧阶段,可利用内碳源实现剩余硝态氮的反硝化。
7.Researchers found that the anoxic 缺氧的 environment promoted the growth of certain bacteria.
研究人员发现,缺氧的缺氧的环境促进了某些细菌的生长。
8.The anoxic 缺氧的 conditions were caused by excessive algae growth.
过量的藻类生长导致了缺氧的缺氧的条件。
9.In anoxic 缺氧的 zones, most marine life cannot survive.
在缺氧的缺氧的区域,大多数海洋生物无法生存。
10.The fish died due to the anoxic 缺氧的 conditions in the lake.
由于湖泊中的缺氧的缺氧的条件,鱼类死亡。
11.The sediments at the bottom of the ocean are often anoxic 缺氧的, leading to unique geological formations.
海洋底部的沉积物通常是缺氧的缺氧的,导致独特的地质构造。
作文
In the study of environmental science, one term that frequently arises is anoxic, which refers to conditions where there is a lack of oxygen. This phenomenon can have significant implications for ecosystems, particularly in aquatic environments. When water bodies become anoxic, it can lead to the death of fish and other marine life that depend on oxygen for survival. The causes of anoxic conditions can vary; they may result from excessive nutrient runoff, which stimulates algal blooms. These blooms, when they die off and decompose, consume large amounts of oxygen in the process, leading to anoxic waters.The impact of anoxic conditions extends beyond just the immediate effects on aquatic life. Ecosystems are interconnected, and the loss of species in anoxic zones can disrupt food chains and affect biodiversity. For instance, if fish populations decline due to anoxic waters, this not only impacts those species but also the birds and mammals that rely on fish as a primary food source. Furthermore, anoxic conditions can contribute to the release of toxic substances from sediments, further complicating the health of the ecosystem.Human activities play a crucial role in exacerbating anoxic conditions. Urbanization, agricultural practices, and industrial discharges often introduce excessive nutrients into water bodies. As we continue to develop and expand our cities, it is essential to consider the consequences of our actions on the environment. Implementing better waste management practices, reducing fertilizer usage, and preserving natural habitats can help mitigate the risks of anoxic conditions.Moreover, understanding the science behind anoxic environments is vital for conservation efforts. Scientists are developing strategies to monitor and manage these areas effectively. By studying the factors that contribute to anoxic conditions, researchers can create models to predict future occurrences and suggest interventions. For example, restoring wetlands can improve water quality and increase oxygen levels, helping to combat anoxic conditions.In conclusion, the term anoxic encapsulates a critical environmental issue that affects not only aquatic life but also the broader ecosystem. As we face increasing challenges related to climate change and pollution, it is imperative to address the factors that lead to anoxic conditions. Through collaboration between scientists, policymakers, and the community, we can work towards healthier ecosystems and a sustainable future. Awareness and education about anoxic environments will empower individuals to take action and advocate for the protection of our planet's precious resources.
在环境科学的研究中,一个经常出现的术语是缺氧,它指的是缺乏氧气的条件。这种现象对生态系统,特别是水生环境,可以产生重大影响。当水体变得缺氧时,会导致依赖氧气生存的鱼类和其他海洋生物的死亡。缺氧条件的原因可能各不相同;它们可能是由于过量的营养物质流入,刺激了藻类的繁殖。这些藻类在死亡和分解时,会消耗大量的氧气,从而导致水体缺氧。缺氧条件的影响不仅限于对水生生命的直接影响。生态系统是相互关联的,缺氧区域物种的丧失可能会破坏食物链并影响生物多样性。例如,如果由于水体缺氧而导致鱼类数量下降,这不仅影响这些物种,还会影响依赖鱼类作为主要食物来源的鸟类和哺乳动物。此外,缺氧条件还可能导致沉积物中毒素的释放,进一步复杂化生态系统的健康。人类活动在加剧缺氧条件方面发挥着至关重要的作用。城市化、农业实践和工业排放通常将过量的营养物质引入水体。当我们继续开发和扩展我们的城市时,必须考虑我们行为对环境的后果。实施更好的废物管理实践、减少化肥使用和保护自然栖息地可以帮助减轻缺氧条件的风险。此外,理解缺氧环境背后的科学对于保护工作至关重要。科学家正在制定有效监测和管理这些区域的策略。通过研究导致缺氧条件的因素,研究人员可以创建模型来预测未来的发生情况并建议干预措施。例如,恢复湿地可以改善水质并提高氧气水平,有助于对抗缺氧条件。总之,术语缺氧概括了一个关键的环境问题,这不仅影响水生生命,也影响更广泛的生态系统。随着我们面临与气候变化和污染相关的日益严峻的挑战,解决导致缺氧条件的因素是至关重要的。通过科学家、政策制定者和社区之间的合作,我们可以朝着更健康的生态系统和可持续的未来迈进。对缺氧环境的意识和教育将使个人能够采取行动,并倡导保护我们星球的珍贵资源。