isomerase

简明释义

[aɪˈsɒməreɪs][ˈaɪsəmərˌeɪz;aɪsoʊmərˌeɪz]

n. [生化] 异构酶

英英释义

Isomerase is an enzyme that catalyzes the conversion of a molecule into one of its isomers.

异构酶是一种催化分子转化为其异构体的酶。

单词用法

specific isomerase

特定异构酶

enzyme isomerase

酶异构酶

class of isomerases

异构酶的类别

role of isomerase

异构酶的作用

phosphoglucose isomerase

磷酸葡萄糖异构酶

glucose-6-phosphate isomerase

葡萄糖-6-磷酸异构酶

triose phosphate isomerase

三碳磷酸异构酶

isomerase enzyme activity

异构酶酶活性

同义词

enzyme

Isomerases are a type of enzyme that catalyze the conversion of a molecule into one of its isomers.

异构酶是一种催化分子转化为其异构体的酶。

catalyst

催化剂

The role of catalysts, including isomerases, is crucial in biochemical reactions.

包括异构酶在内的催化剂在生化反应中起着至关重要的作用。

反义词

synthase

合酶

Synthase is an enzyme that catalyzes the synthesis of a compound from simpler precursors.

合酶是一种催化简单前体合成化合物的酶。

ligase

连接酶

Ligase is essential in DNA replication and repair, joining two molecules together.

连接酶在DNA复制和修复中是必不可少的,能够将两个分子连接在一起。

例句

1.Methods: Aspergillus niger cells entrapped by modified phosphorylated polyvinyl alcohol(PVA) alginate gel co react with immobilized glucose isomerase to transfer sucrose to FOS.

方法:以磷酸化的PVA 海藻酸钙为载体包埋黑曲霉细胞,与固定化的葡萄糖异构酶协同反应,以蔗糖为原料转化生产低聚果糖。

2.The structure of Triose Phosphate Isomerase is complex.

磷酸丙糖异构酶的结构复杂。

3.It was reported here the purification and crystallization of Protein Disulfide Isomerase.

在此报告了它的分离纯化和晶体生长。

4.Streptomyces acidophilus is one of the glucose isomerase producing strains.

嗜酸链霉菌是葡萄糖异构酶的产生菌之一,具有良好生产潜力。

5.The glucose isomerase may be exogenously added or expressed in the strain and exported into the media.

葡萄糖异构酶可以外源方式添加,也可以在菌株中表达并输出到培养基中。

6.A strain of glucose Isomerase-producing Thermophilic Actinomycetes has been investigated.

本文对产生胞外葡萄糖异构酶的一株嗜热放线菌进行研究。

7.Without the action of isomerase, many metabolic pathways would be inefficient.

如果没有异构酶的作用,许多代谢途径将会变得低效。

8.In glycolysis, isomerase is essential for the conversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate.

在糖酵解过程中,异构酶对二羟丙酮磷酸转化为甘油醛-3-磷酸是必不可少的。

9.Researchers discovered a new type of isomerase that can catalyze reactions at lower temperatures.

研究人员发现了一种新的异构酶,能够在较低温度下催化反应。

10.The study focused on the specific activity of isomerase in bacterial cells.

该研究集中于细菌细胞中异构酶的特定活性。

11.The enzyme isomerase plays a crucial role in converting glucose-6-phosphate to fructose-6-phosphate.

异构酶在将葡萄糖-6-磷酸转化为果糖-6-磷酸的过程中起着至关重要的作用。

作文

In the fascinating world of biochemistry, enzymes play a crucial role in facilitating various biochemical reactions. Among these enzymes, one particularly interesting category is known as isomerase, which are responsible for catalyzing the rearrangement of molecular structures. This means that isomerase enzymes convert a molecule into its isomer, which is a compound that has the same molecular formula but a different structural arrangement. Understanding the function and importance of isomerase can provide valuable insights into metabolic pathways and the overall functioning of living organisms.To illustrate the significance of isomerase, consider the process of glycolysis, where glucose is broken down to produce energy. One of the key steps in this pathway involves an isomerase enzyme that converts glucose-6-phosphate into fructose-6-phosphate. This conversion is essential because it allows the continuation of the glycolytic pathway, ultimately leading to the production of ATP, the energy currency of the cell. Without the action of isomerase, this critical step would be hindered, demonstrating how vital these enzymes are in metabolic processes.Moreover, isomerase enzymes are not limited to carbohydrate metabolism; they also play significant roles in lipid and amino acid metabolism. For instance, in the synthesis of certain amino acids, isomerase enzymes facilitate the conversion of one amino acid form to another, ensuring that the body has the necessary building blocks for protein synthesis. This highlights the versatility and importance of isomerase in various biochemical pathways.From a clinical perspective, understanding isomerase can also have implications for drug development and disease treatment. Certain diseases are linked to deficiencies or malfunctions of specific isomerase enzymes. For example, congenital disorders such as galactosemia arise from the inability to properly metabolize galactose due to defective isomerase activity. By studying these enzymes, researchers can develop targeted therapies that address the underlying biochemical issues, potentially leading to better management of these conditions.Furthermore, the study of isomerase extends beyond human health; it is also relevant in agriculture and biotechnology. For example, manipulating isomerase activity in plants can enhance the production of certain metabolites, which may improve crop yields or increase resistance to pests and diseases. This application of isomerase research showcases the enzyme's potential impact on food security and sustainable agricultural practices.In conclusion, isomerase enzymes are integral components of biochemical systems, playing a vital role in the transformation of molecules within metabolic pathways. Their ability to catalyze structural rearrangements is essential for the proper functioning of various biological processes. As research continues to uncover the complexities of isomerase and its applications, it becomes clear that these enzymes are not just mere catalysts; they are key players in the intricate dance of life, influencing everything from energy production to disease management and agricultural advancements.

在生物化学的迷人世界中,酶在促进各种生化反应中发挥着至关重要的作用。在这些酶中,有一种特别有趣的类别被称为异构酶,它们负责催化分子结构的重排。这意味着异构酶酶将一种分子转化为其异构体,即具有相同分子式但不同结构排列的化合物。理解异构酶的功能和重要性可以提供对代谢途径和生物体整体功能的宝贵见解。为了说明异构酶的重要性,考虑一下糖酵解过程,在这个过程中,葡萄糖被分解以产生能量。该途径中的一个关键步骤涉及一种异构酶,它将葡萄糖-6-磷酸转化为果糖-6-磷酸。这一转化是必不可少的,因为它允许糖酵解途径的继续,最终导致ATP的产生,ATP是细胞的能量货币。如果没有异构酶的作用,这一关键步骤将受到阻碍,这表明这些酶在代谢过程中是多么重要。此外,异构酶酶不仅限于碳水化合物代谢;它们在脂质和氨基酸代谢中也发挥着重要作用。例如,在某些氨基酸的合成中,异构酶酶促进一种氨基酸形式向另一种形式的转化,确保身体拥有合成蛋白质所需的基本构件。这突显了异构酶在各种生化途径中的多功能性和重要性。从临床角度来看,理解异构酶也可能对药物开发和疾病治疗产生影响。某些疾病与特定异构酶酶的缺乏或功能障碍有关。例如,先天性疾病如半乳糖血症由于缺乏适当代谢半乳糖的能力而出现,这与异构酶的活动缺陷有关。通过研究这些酶,研究人员可以开发针对基础生化问题的靶向疗法,从而可能改善对这些病症的管理。此外,对异构酶的研究还超越了人类健康;它在农业和生物技术中也具有相关性。例如,操控植物中的异构酶活动可以增强某些代谢物的生产,从而提高作物产量或增加抵御害虫和疾病的能力。这一异构酶研究的应用展示了这些酶对粮食安全和可持续农业实践的潜在影响。总之,异构酶酶是生化系统的组成部分,在代谢途径中发挥着重要作用。它们催化结构重排的能力对于各种生物过程的正常运作至关重要。随着研究不断揭示异构酶的复杂性及其应用,越来越清楚的是,这些酶不仅仅是催化剂;它们是生命复杂舞蹈中的关键角色,影响从能量生产到疾病管理以及农业进步的方方面面。