karyotype

简明释义

[ˈkærɪəˌtaɪp][ˈkærɪəˌtaɪp]

n. 染色体组型,[遗] 核型

复 数 k a r y o t y p e s

第 三 人 称 单 数 k a r y o t y p e s

现 在 分 词 k a r y o t y p i n g

过 去 式 k a r y o t y p e d

过 去 分 词 k a r y o t y p e d

英英释义

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell.

核型是真核细胞核中染色体的数量和外观。

It is used to diagnose genetic disorders and to study chromosomal abnormalities.

它用于诊断遗传疾病和研究染色体异常。

单词用法

normal karyotype

正常染色体组

abnormal karyotype

异常染色体组

karyotype nomenclature

染色体组命名法

karyotype study

染色体组研究

determine the karyotype

确定染色体组

analyze the karyotype

分析染色体组

compare karyotypes

比较染色体组

karyotype abnormalities

染色体组异常

同义词

chromosome complement

染色体补体

The karyotype analysis revealed an abnormal chromosome complement.

核型分析显示染色体补体异常。

chromosomal profile

染色体特征

Doctors often examine the chromosomal profile to diagnose genetic disorders.

医生通常检查染色体特征以诊断遗传疾病。

反义词

aneuploidy

非整倍体

Aneuploidy can lead to genetic disorders.

非整倍体可能导致遗传疾病。

polyploidy

多倍体

Polyploidy is common in plants and can result in larger fruit sizes.

多倍体在植物中很常见,可能导致果实尺寸增大。

例句

1.There were no abnormal karyotype in bone marrow cells.

骨髓细胞无异常核型。

2.In this stage, the invention of banding technique set karyotype analysis in the way to more micro and precise research.

现阶段,染色体显带技术的发明为染色体组型分析铺就了一条更精确,更准确的研究道路。

3.The results indicated that it is more stable and reliable for karyotype analysis based on areas than on lengths.

表明以面积为依据较传统的以长度为依据的核型分析可能更加稳定可靠。

4.An amniocentesis revealed normal karyotype (46, XX).

羊水诊断核型正常(46,xx)。

5.An analysis of karyotype on Coronilla varia l.

标题多变小冠花的核型分析。

6.In this paper, chromosomal karyotype of Guanzhong dairy goat and Tong sheep was studied by using the peripheral blood lymphocyte culture method.

采用外周血淋巴细胞培养法,对关中奶山羊和同羊的染色体核型进行分析。

7.METHODS G banding of chromosomes and then karyotype were analysized with an international system for human cytogenetic nomenclature (ISCN).

方法染色体G显带后按人类细胞遗传学国际命名体制(ISCN)进行核型分析。

8.The karyotype formulae are as follows: O.

核型公式为:粗齿紫萁O。

9.A normal human karyotype 染色体组型 consists of 46 chromosomes.

正常的人类 karyotype 染色体组型 由46条染色体组成。

10.In a karyotype 染色体组型 test, scientists examine the number and structure of chromosomes.

karyotype 染色体组型 测试中,科学家检查染色体的数量和结构。

11.Doctors often use karyotype 染色体组型 analysis to diagnose conditions like Down syndrome.

医生经常使用 karyotype 染色体组型 分析来诊断唐氏综合症等疾病。

12.The laboratory performed a karyotype 染色体组型 test on the patient's blood sample.

实验室对患者的血液样本进行了 karyotype 染色体组型 测试。

13.The doctor explained that a karyotype 染色体组型 analysis could help identify genetic disorders.

医生解释说,karyotype 染色体组型 分析可以帮助识别遗传疾病。

作文

The study of genetics has always fascinated scientists, and one of the key concepts in this field is the karyotype. A karyotype refers to the number and appearance of chromosomes in the nucleus of a eukaryotic cell. It is a crucial tool for understanding genetic disorders, evolutionary biology, and species classification. The term itself is derived from the Greek words 'karyon,' meaning 'nucleus,' and 'typos,' meaning 'type' or 'model.' Essentially, a karyotype provides a snapshot of an organism's chromosome composition.In humans, a typical karyotype consists of 46 chromosomes, arranged in 23 pairs. These include 22 pairs of autosomes and one pair of sex chromosomes, which determine an individual's gender. Females have two X chromosomes (XX), while males have one X and one Y chromosome (XY). This arrangement is not only vital for understanding human genetics but also serves as a basis for identifying chromosomal abnormalities. For instance, Down syndrome is caused by the presence of an extra copy of chromosome 21, resulting in a karyotype of 47 chromosomes instead of the normal 46.The process of determining a karyotype involves several steps. First, cells are collected, often from blood or amniotic fluid. These cells are then cultured in a laboratory to encourage division. Once the cells are dividing, a chemical is added to halt the process at metaphase, when chromosomes are most visible. The cells are then stained, and images of the chromosomes are taken under a microscope. These images are analyzed to arrange the chromosomes in pairs according to size and shape, creating a complete karyotype.Understanding the karyotype is not limited to humans; it extends to many other organisms as well. For example, the karyotype of the common fruit fly, Drosophila melanogaster, has been extensively studied and consists of only eight chromosomes. This simplicity has made it an ideal model organism for genetic research. By comparing the karyotype of different species, scientists can trace evolutionary relationships and understand how certain traits have developed over time.Moreover, advancements in technology have allowed for more detailed analysis of karyotype structures. Techniques such as fluorescence in situ hybridization (FISH) enable researchers to visualize specific genes on chromosomes, providing insights into genetic diseases and potential treatments. Such innovations highlight the importance of karyotype analysis in modern genetics.In conclusion, the concept of karyotype is fundamental to the study of genetics. It serves as a critical tool for diagnosing genetic disorders, understanding evolutionary biology, and conducting research across various biological fields. As our knowledge of genetics continues to expand, the significance of the karyotype will undoubtedly grow, paving the way for new discoveries and advancements in medicine and biology.

基因学的研究一直吸引着科学家,而这个领域的一个关键概念就是核型核型是指真核细胞核内染色体的数量和外观。它是理解遗传疾病、进化生物学和物种分类的重要工具。这个术语本身源于希腊语单词“karyon”,意为“细胞核”,以及“typos”,意为“类型”或“模型”。从本质上讲,核型提供了一个有机体染色体组成的快照。在人体中,典型的核型由46条染色体组成,分为23对。这包括22对常染色体和一对性染色体,后者决定个体的性别。女性有两条X染色体(XX),而男性则有一条X和一条Y染色体(XY)。这种排列不仅对理解人类遗传学至关重要,还为识别染色体异常提供了基础。例如,唐氏综合症是由第21号染色体的额外拷贝引起的,导致核型为47条染色体,而不是正常的46条。确定核型的过程涉及几个步骤。首先,通常从血液或羊水中收集细胞。然后在实验室中培养这些细胞以促进分裂。一旦细胞开始分裂,就会添加一种化学物质来在中期停止这一过程,此时染色体最为明显。随后对细胞进行染色,并在显微镜下拍摄染色体的图像。这些图像被分析,以根据大小和形状将染色体成对排列,从而创建完整的核型。理解核型并不限于人类;它还扩展到许多其他生物。例如,普通果蝇(Drosophila melanogaster)的核型已经被广泛研究,仅由八条染色体组成。这种简单性使其成为遗传研究的理想模式生物。通过比较不同物种的核型,科学家可以追踪进化关系,并了解某些特征是如何随时间发展而来的。此外,技术的进步使得对核型结构的更详细分析成为可能。荧光原位杂交(FISH)等技术使研究人员能够可视化染色体上的特定基因,从而提供有关遗传疾病及潜在治疗方案的见解。这些创新突显了现代遗传学中核型分析的重要性。总之,核型的概念是遗传学研究的基础。它作为诊断遗传疾病、理解进化生物学以及在各个生物学领域开展研究的重要工具。随着我们对遗传学的知识不断扩展,核型的重要性无疑会增加,为医学和生物学的新发现和进展铺平道路。