anaerobiosis
简明释义
英[ˌæneərəʊbaɪˈəʊsɪs]美[ˌænəˌrobaɪˈosɪs;ˌæneˌrobaɪˈo
n. [生物] 乏氧生活
复 数 a n a e r o b i o s e s
英英释义
Anaerobiosis is a state or condition in which an organism lives and grows in the absence of oxygen. | 厌氧生存是一种生物在缺乏氧气的情况下生存和生长的状态或条件。 |
单词用法
厌氧条件 | |
厌氧生物 | |
厌氧呼吸 | |
厌氧代谢 | |
在厌氧环境中生存 | |
适应厌氧环境 | |
研究厌氧生存状态 | |
厌氧生存状态的影响 |
同义词
反义词
需氧生物状态 | 需氧生物状态对许多生物的生存至关重要。 | ||
需氧呼吸 | 需氧呼吸在氧气存在的情况下进行。 |
例句
1.Certain soil microorganisms exhibit anaerobiosis (厌氧生存), which helps them decompose organic matter in waterlogged environments.
某些土壤微生物表现出anaerobiosis(厌氧生存),这有助于它们在水淹环境中分解有机物质。
2.In medical settings, understanding anaerobiosis (厌氧生存) is crucial for treating infections caused by anaerobic bacteria.
在医学环境中,理解anaerobiosis(厌氧生存)对治疗由厌氧细菌引起的感染至关重要。
3.The production of biogas is a result of anaerobiosis (厌氧生存), where bacteria break down organic material in landfills.
沼气的产生是anaerobiosis(厌氧生存)的结果,其中细菌在垃圾填埋场中分解有机物质。
4.In the study of microbiology, researchers often explore the concept of anaerobiosis (厌氧生存) to understand how certain bacteria thrive without oxygen.
在微生物学研究中,研究人员常常探讨anaerobiosis(厌氧生存)的概念,以了解某些细菌如何在没有氧气的情况下生存。
5.The fermentation process relies heavily on anaerobiosis (厌氧生存), allowing yeast to convert sugars into alcohol in the absence of oxygen.
发酵过程严重依赖于anaerobiosis(厌氧生存),使酵母能够在缺氧的情况下将糖转化为酒精。
作文
Anaerobiosis, which refers to the condition in which organisms live and thrive in the absence of oxygen, plays a crucial role in various biological processes. This phenomenon is particularly important in environments where oxygen is scarce or absent, such as deep underwater ecosystems, certain soil layers, and even within the human gut. Understanding anaerobiosis (厌氧生存) is essential for comprehending how life adapts to different environmental conditions and the implications it has on various fields, including medicine, agriculture, and environmental science.In the context of microbiology, many bacteria are classified as anaerobic organisms, meaning they do not require oxygen for growth and reproduction. These anaerobic bacteria can be further divided into two categories: obligate anaerobes, which cannot survive in the presence of oxygen, and facultative anaerobes, which can grow in either the presence or absence of oxygen. The study of anaerobiosis (厌氧生存) has significant implications for understanding human health, particularly in relation to gut microbiota. The human digestive system hosts a diverse community of microorganisms, many of which are anaerobes. These bacteria play a vital role in breaking down complex carbohydrates, synthesizing vitamins, and protecting against pathogenic organisms.Moreover, anaerobiosis (厌氧生存) is also critical in industrial applications, particularly in fermentation processes. Fermentation is an anaerobic process that converts sugars into acids, gases, or alcohol using microorganisms. This process is widely used in the production of various foods and beverages, such as yogurt, sauerkraut, and beer. Understanding the principles of anaerobiosis (厌氧生存) allows food scientists and producers to optimize fermentation conditions, ensuring the desired flavors and textures in their products.In environmental science, anaerobiosis (厌氧生存) plays a significant role in biogeochemical cycles, particularly in the decomposition of organic matter. Anaerobic processes contribute to nutrient cycling in ecosystems, influencing soil fertility and plant growth. For instance, in wetlands, anaerobic bacteria break down organic materials, releasing nutrients that are vital for the growth of aquatic plants. Additionally, understanding anaerobiosis (厌氧生存) is essential for waste management practices, as anaerobic digestion is a common method for treating organic waste, converting it into biogas and digestate, which can be used as renewable energy and fertilizer, respectively.Despite the benefits associated with anaerobiosis (厌氧生存), it can also pose challenges. For example, some pathogenic bacteria are obligate anaerobes, meaning they thrive in environments devoid of oxygen and can cause infections in humans. Clostridium difficile, for instance, is a well-known anaerobic bacterium that can lead to severe gastrointestinal issues. Therefore, understanding anaerobiosis (厌氧生存) is crucial for developing effective treatment strategies and preventive measures against such infections.In conclusion, anaerobiosis (厌氧生存) is a fascinating and complex phenomenon that impacts various aspects of life on Earth. From the microbial communities in our guts to the fermentation processes in food production and the recycling of nutrients in ecosystems, the absence of oxygen is a condition that shapes life in myriad ways. As we continue to explore the intricacies of anaerobiosis (厌氧生存), we gain valuable insights that can enhance our understanding of biology, improve human health, and promote sustainable practices in agriculture and waste management.
厌氧生存是指生物在没有氧气的情况下生存和繁衍的状态,这一现象在氧气稀缺或缺失的环境中尤为重要,如深海生态系统、某些土壤层,甚至人类肠道。理解anaerobiosis(厌氧生存)对理解生命如何适应不同环境条件及其对医学、农业和环境科学等多个领域的影响至关重要。在微生物学中,许多细菌被归类为厌氧生物,意味着它们不需要氧气来生长和繁殖。这些厌氧细菌可以进一步分为两类:专性厌氧菌,无法在氧气存在的情况下生存;兼性厌氧菌,可以在有氧或无氧的环境中生长。对anaerobiosis(厌氧生存)的研究对理解人类健康具有重要意义,特别是在肠道微生物群方面。人类消化系统内寄宿着多样的微生物群落,其中许多是厌氧菌。这些细菌在分解复杂碳水化合物、合成维生素和保护宿主免受病原体侵害方面发挥着重要作用。此外,anaerobiosis(厌氧生存)在工业应用中也至关重要,尤其是在发酵过程中。发酵是一种厌氧过程,通过微生物将糖转化为酸、气体或酒精。这一过程广泛应用于各种食品和饮料的生产,如酸奶、泡菜和啤酒。理解anaerobiosis(厌氧生存)的原理使食品科学家和生产者能够优化发酵条件,确保产品的理想风味和质地。在环境科学中,anaerobiosis(厌氧生存)在生物地球化学循环中发挥着重要作用,尤其是在有机物的分解过程中。厌氧过程有助于生态系统中的养分循环,影响土壤肥力和植物生长。例如,在湿地中,厌氧细菌分解有机物,释放出对水生植物生长至关重要的养分。此外,理解anaerobiosis(厌氧生存)对废物管理实践至关重要,因为厌氧消化是处理有机废物的常见方法,将其转化为沼气和消化物,后者可用作可再生能源和肥料。尽管与anaerobiosis(厌氧生存)相关的好处很多,但它也可能带来挑战。例如,一些致病细菌是专性厌氧菌,意味着它们在缺氧环境中繁衍生息,并可能在人类中引起感染。艰难梭菌就是一个众所周知的厌氧细菌,可能导致严重的胃肠问题。因此,理解anaerobiosis(厌氧生存)对制定有效的治疗策略和预防措施至关重要。总之,anaerobiosis(厌氧生存)是一个迷人而复杂的现象,影响着地球上生命的各个方面。从我们肠道内的微生物群落到食品生产中的发酵过程,再到生态系统中养分的回收,缺氧是一种以多种方式塑造生命的状态。随着我们继续探索anaerobiosis(厌氧生存)的复杂性,我们获得了宝贵的见解,能够增强我们对生物学的理解,改善人类健康,并促进农业和废物管理中的可持续实践。