antiproton

简明释义

[ˈæntiprəʊtɒn][ˈæntiproʊtɑːn]

n. [高能]反质子(等于 negative proton);[高能]负质子

英英释义

An antiproton is the antiparticle of the proton, having the same mass as a proton but a negative electric charge.

反质子是质子的反粒子,具有与质子相同的质量,但带有负电荷。

单词用法

antiproton annihilation

反质子湮灭

antiproton production

反质子生产

antiproton beam

反质子束

antiproton therapy

反质子治疗

同义词

negative proton

负质子

The antiproton is the antiparticle of the proton.

反质子是质子的反粒子。

anti-hydrogen

反氢

In experiments, scientists create anti-hydrogen by combining antiprotons with positrons.

在实验中,科学家通过将反质子与正电子结合来产生反氢。

反义词

proton

质子

The proton is a fundamental particle found in the nucleus of an atom.

质子是存在于原子核中的基本粒子。

例句

1.Using recent experimental results, we calculate the antiproton flux which is produced by the collisions of cosmic rays with the interstellar matter.

利用最近的实验结果,计算了宇宙线与星际物质碰撞产生的反质子流强。

2.When a particle, such as a proton, meets with its antimatter partner, the antiproton, the two annihilate each other in a powerful explosion.

就像正质子那样的粒子,如果它与其反物质的配偶——反质子相遇,这两个粒子就会在强大的爆炸中相互湮灭。

3.It is shown that the antiproton optical potential have strong absorption characteristics.

讨论了反质子光学势是强吸收型的特点。

4.For example, a proton is denoted with a "p", and an antiproton is denoted by a "p" with a line over its top.

举例来说,一个质子用“p”表示,而一个反质子用“p”在它的顶端上加一条线表示。

5.By 1976 the drive to convert CERN's new accelerator into a proton-antiproton collider was on, spearheaded by Carlo Rubbia, an Italian experimental physicist.

1976年,把欧洲核子研究所的新加速器改造成质子-反质子对撞机的征程,在意大利实验物理学家卡罗·鲁比亚引领下启航了。

6.For decades, physicists at CERN and elsewhere have been trying to overcome these limitations with antihydrogen, which consists of a single positron orbiting a single antiproton.

几十年来,欧洲核子研究中心和其他地方的物理学家一直在想方设法克服反氢原子的这些局限。反氢原子由一个正电子与一个反质子构成,正电子绕反质子运行。

7.His research team discovered the antiproton.

他的研究组发现了反质子。

8.Researchers at CERN are studying the properties of antiprotons 反质子 to understand more about antimatter.

CERN的研究人员正在研究反质子的性质,以更好地理解反物质。

9.In certain experiments, scientists can trap antiprotons 反质子 using magnetic fields.

在某些实验中,科学家可以使用磁场捕获反质子

10.An antiproton 反质子 has the same mass as a proton but opposite charge.

一个反质子的质量与质子相同,但电荷相反。

11.The discovery of antiprotons 反质子 was a significant milestone in particle physics.

反质子的发现是粒子物理学中的一个重要里程碑。

12.The physicist explained how an antiproton 反质子 is created in high-energy collisions.

物理学家解释了如何在高能碰撞中产生反质子

作文

The universe is a vast and complex place, filled with mysteries that scientists strive to understand. One of the most fascinating aspects of particle physics is the existence of antimatter, which includes particles such as the antiproton. An antiproton is the antiparticle of the proton, possessing the same mass as a proton but carrying a negative charge instead of a positive one. This unique property makes antiprotons particularly interesting for physicists studying the fundamental forces of nature.Antimatter is not just a theoretical concept; it has practical implications in various fields, including medicine and energy production. For instance, positron emission tomography (PET) scans utilize positrons, which are the antiparticles of electrons, to create detailed images of the body. Similarly, antiprotons could potentially be used in advanced medical treatments or even in the development of new energy sources.The discovery of antiprotons dates back to 1955 when physicists Emilio Segrè and Owen Chamberlain first identified them in a laboratory experiment. Their groundbreaking work earned them the Nobel Prize in Physics in 1959. The existence of antiprotons confirmed the predictions made by quantum field theories about the symmetry between matter and antimatter.However, the universe appears to be dominated by matter, leading to the so-called baryon asymmetry problem. Despite the equal production of matter and antimatter during the Big Bang, we observe a significant imbalance today. This raises intriguing questions: Why is there more matter than antimatter? What happened to all the antiprotons that should have formed alongside protons?Research into antiprotons continues at various particle accelerators around the world, such as CERN's Large Hadron Collider. These facilities allow scientists to collide particles at high energies, producing conditions similar to those just after the Big Bang. By studying the interactions of antiprotons with other particles, researchers hope to uncover the reasons behind the dominance of matter and gain insights into the fundamental laws of physics.Moreover, the study of antiprotons may also help us explore new frontiers in cosmology. Theoretical models suggest that regions of antimatter might exist in the universe, potentially leading to fascinating discoveries about the structure and evolution of the cosmos. If antiprotons can be found in cosmic rays, they could provide clues about distant astrophysical processes and the origins of cosmic phenomena.In conclusion, the antiproton is not just a curious particle in the realm of physics; it represents a key to unlocking some of the universe's deepest mysteries. As scientists continue to investigate the properties and behaviors of antiprotons, we inch closer to understanding the fundamental nature of reality itself. The exploration of antimatter could pave the way for revolutionary advancements in technology, medicine, and our comprehension of the cosmos, making the antiproton a truly remarkable subject of study in modern science.

宇宙是一个广阔而复杂的地方,充满了科学家们努力理解的奥秘。粒子物理学中最迷人的方面之一是反物质的存在,其中包括像反质子这样的粒子。反质子是质子的反粒子,具有与质子相同的质量,但携带负电荷,而不是正电荷。这一独特的性质使得反质子在研究自然基本力的物理学家中尤其引人关注。反物质不仅仅是一个理论概念;它在医学和能源生产等多个领域都有实际应用。例如,正电子发射断层扫描(PET)利用正电子,即电子的反粒子,来创建身体的详细图像。同样,反质子也可能在先进的医疗治疗或新型能源的开发中发挥作用。反质子的发现可以追溯到1955年,当时物理学家埃米利奥·塞格雷和欧文·钱伯林首次在实验室实验中识别出它们。他们的开创性工作使他们在1959年获得诺贝尔物理学奖。反质子的存在证实了量子场论关于物质和反物质之间对称性的预测。然而,宇宙似乎被物质主导,这导致了所谓的重子不对称问题。尽管在大爆炸期间物质和反物质的产生是相等的,但我们今天观察到明显的不平衡。这引发了令人着迷的问题:为什么物质比反物质多?所有应该与质子一起形成的反质子都去哪儿了?世界各地的各种粒子加速器仍在对反质子进行研究,例如CERN的大强子对撞机。这些设施允许科学家以高能量碰撞粒子,产生类似于大爆炸后不久的条件。通过研究反质子与其他粒子的相互作用,研究人员希望揭示物质主导的原因,并深入了解物理学的基本法则。此外,对反质子的研究还可能帮助我们探索宇宙学的新前沿。理论模型表明,宇宙中可能存在反物质区域,这可能导致对宇宙结构和演化的迷人发现。如果在宇宙射线中可以找到反质子,它们可能提供关于遥远天体物理过程和宇宙现象起源的线索。总之,反质子不仅仅是物理学领域中的一个好奇粒子;它代表着解锁宇宙一些最深奥的谜团的关键。随着科学家们继续研究反质子的属性和行为,我们逐渐接近理解现实本质的目标。对反物质的探索可能为技术、医学和我们对宇宙的理解带来革命性的进步,使得反质子成为现代科学中真正值得研究的主题。