postsynaptic
简明释义
英[ˌpəʊstsɪˈnæptɪk]美[ˌpoʊstsɪˈnæptɪk]
adj. 突触后的
英英释义
Referring to the part of a neuron that receives signals from another neuron at a synapse. | 指在突触中接收来自另一个神经元信号的神经元部分。 |
单词用法
突触后抑制 | |
突触后激活 | |
突触后信号传导 | |
突触后反应 | |
增强突触后活动 | |
调节突触后反应 | |
测量突触后电流 | |
改变突触后功能 |
同义词
反义词
突触前的 | The presynaptic neuron releases neurotransmitters into the synaptic cleft. | 突触前神经元将神经递质释放到突触间隙中。 |
例句
1.The equations of the model, corresponding to postsynaptic potentials, receptor potentials, initial segment graded potentials and the impulse train along the axon respectively, have been given.
模型方程分别对应于突触后电位、感受器电位、始段分级电位和轴突上的的脉冲系列,每个方程都具有明确的生理意义。
2.Dendritic spines are functional protrusions on neuron dendrites and generally act as postsynaptic sites to form integral synapses with axon terminals.
树突棘是神经元树突上的功能性突起结构,通常作为突触后成份与投射来的轴突共同构成完整的突触连接。
3.Objective To explore the effect of pentylenetetrazol(PTZ)-kindled epilepsy on rats learning, memory and the expression of postsynaptic density 95(PSD-95).
目的探讨戊四氮诱导癫痫对大鼠空间学习记忆功能的影响及海马突触后致密物95(PSD-95)的表达变化。
4.Objective To study the expression and distribution of postsynaptic density protein-93 (PSD-93) after spinal cord injury (SCI).
目的探讨突触后密度蛋白- 93 (PSD - 93)在脊髓损伤(SCI)后的表达变化以及定位情况。
5.The results indicate that dorsal column postsynaptic neurons possess a relatively simplified geometric organization and a considerable complexity in their local synaptic circuitry.
结果提示,背索突触后神经元具有相对简化的几何构筑和相当复杂的局部突触回路。
6.GIRK channels are involved in the regulation of the excitability of neurons and cardiac rate. They may contribute to the resting and inhibitory postsynaptic potential.
它能调节心率及神经细胞兴奋性和静息电位的水平,起慢突触后抑制作用。
7.A major challenge in studying the synapse is how to tell what observed effects are due to presynaptic factors and which to postsynaptic ones.
研究突触最大的困难在于如何区辨所观察到的反应是来自突触前或突触后因子所导致。
8.Postsynaptic potentials manifested current effect and frequency dependency and their IPSP displayed a prolonged inhibition.
突触后电位表现电流效应和频率依赖性,其IPSP具有长时程的抑制作用。
9.The recordings of postsynaptic currents were performed by using the whole-cell voltage-clamp method.
采用全细胞电压钳记录技术,给予选择性受体阻断剂以分离不同的突触后受体电流。
10.The strength of the postsynaptic potential determines how effectively signals are transmitted.
突触后电位的强度决定了信号传递的有效性。
11.Inhibitory signals can dampen the activity of the postsynaptic neuron.
抑制信号可以减弱突触后神经元的活动。
12.The neurotransmitter binds to the postsynaptic receptor, triggering a response in the neuron.
神经递质与突触后受体结合,触发神经元的反应。
13.Changes in postsynaptic receptor density can influence learning and memory.
突触后受体密度的变化可以影响学习和记忆。
14.Dopamine acts on postsynaptic neurons in the reward pathway.
多巴胺作用于奖励通路中的突触后神经元。
作文
In the field of neuroscience, understanding the mechanisms of communication between neurons is crucial. One of the key concepts in this area is the term postsynaptic, which refers to the part of a neuron that receives signals from another neuron at the synapse. When a neurotransmitter is released from the presynaptic neuron, it binds to receptors on the postsynaptic neuron, leading to various responses that can affect the overall functioning of the nervous system. This process is fundamental for transmitting information throughout the brain and body.The postsynaptic neuron plays a vital role in determining whether a signal will be propagated or inhibited. Depending on the type of neurotransmitter and receptor involved, the response can either be excitatory or inhibitory. For instance, when excitatory neurotransmitters like glutamate bind to their corresponding receptors on the postsynaptic side, they can lead to depolarization of the neuron, making it more likely to fire an action potential. Conversely, inhibitory neurotransmitters like GABA can hyperpolarize the postsynaptic neuron, decreasing the likelihood of an action potential.This intricate dance between presynaptic and postsynaptic neurons is essential for various brain functions, including learning, memory, and mood regulation. Dysfunctions in postsynaptic signaling can contribute to numerous neurological and psychiatric disorders, such as depression, schizophrenia, and epilepsy. For example, in depression, there may be an imbalance in neurotransmitter levels that affects the postsynaptic response, leading to mood disturbances.Moreover, the plasticity of postsynaptic neurons is another fascinating aspect of neuroscience. Synaptic plasticity refers to the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. This is particularly important for learning and memory. Long-term potentiation (LTP) is a process where repeated stimulation of a postsynaptic neuron enhances its response to future stimuli, essentially 'training' the neuron to become more sensitive to signals. On the other hand, long-term depression (LTD) can occur when there is a lack of stimulation, resulting in a weakened response.Understanding the postsynaptic mechanisms not only sheds light on normal brain function but also opens avenues for therapeutic interventions. Researchers are exploring ways to target postsynaptic receptors to develop treatments for various mental health conditions. By enhancing or inhibiting specific postsynaptic pathways, it may be possible to restore balance in neurotransmission and alleviate symptoms of disorders.In conclusion, the concept of postsynaptic signaling is fundamental to our understanding of neuronal communication and its implications for behavior and mental health. The interactions at the synapse, particularly on the postsynaptic side, are critical for the proper functioning of the nervous system. As research continues to unfold, we are likely to gain deeper insights into the complexities of postsynaptic mechanisms and their relevance to both health and disease.
在神经科学领域,理解神经元之间的通信机制至关重要。一个关键概念是术语postsynaptic,它指的是神经元的一部分,该部分在突触处接收来自另一个神经元的信号。当神经递质从突触前神经元释放时,它会与postsynaptic神经元上的受体结合,从而引发各种反应,这些反应可能会影响神经系统的整体功能。这个过程对大脑和身体之间的信息传递至关重要。postsynaptic神经元在决定信号是否传播或抑制方面发挥着重要作用。根据所涉及的神经递质和受体的类型,反应可以是兴奋性或抑制性的。例如,当兴奋性神经递质如谷氨酸与其对应的受体结合在postsynaptic侧时,它们可能导致神经元去极化,使其更有可能发放动作电位。相反,抑制性神经递质如GABA可以使postsynaptic神经元超极化,降低动作电位的可能性。突触前和postsynaptic神经元之间的这种复杂互动对于各种大脑功能至关重要,包括学习、记忆和情绪调节。postsynaptic信号传导的功能障碍可能会导致多种神经系统和精神疾病,例如抑郁症、精神分裂症和癫痫。例如,在抑郁症中,神经递质水平的不平衡可能会影响postsynaptic反应,从而导致情绪障碍。此外,postsynaptic神经元的可塑性是神经科学的另一个迷人方面。突触可塑性是指突触能够随着时间的推移而增强或减弱的能力,以响应其活动的增加或减少。这对于学习和记忆尤其重要。长期增强(LTP)是一个过程,其中对postsynaptic神经元的重复刺激增强其对未来刺激的反应,从本质上“训练”神经元变得对信号更加敏感。另一方面,当缺乏刺激时,可能会发生长期抑制(LTD),导致反应减弱。了解postsynaptic机制不仅可以揭示正常大脑功能,还为治疗干预开辟了途径。研究人员正在探索针对postsynaptic受体的方法,以开发各种心理健康状况的治疗方案。通过增强或抑制特定的postsynaptic通路,可能有可能恢复神经传导的平衡并缓解疾病症状。总之,postsynaptic信号传导的概念是我们理解神经元通信及其对行为和心理健康影响的基础。在突触处,特别是在postsynaptic侧的相互作用,对于神经系统的正常功能至关重要。随着研究的不断展开,我们可能会对postsynaptic机制的复杂性及其与健康和疾病相关性有更深入的了解。