interlaminate
简明释义
英[ˌɪntəˈlæmɪneɪt]美[ˌɪntərˈlæmɪˌnet]
v. 插于层间;置于交错薄片间
第 三 人 称 单 数 i n t e r l a m i n a t e s
现 在 分 词 i n t e r l a m i n a t i n g
过 去 式 i n t e r l a m i n a t e d
过 去 分 词 i n t e r l a m i n a t e d
英英释义
To interleave or bond layers of materials together, typically in a laminated structure. | 将材料的层相互交错或粘合在一起,通常用于层压结构中。 |
单词用法
互层叠加材料 | |
互层叠加层 | |
互层叠加过程 | |
将两张薄片互层叠加 | |
用粘合剂进行互层叠加 | |
为了强度而互层叠加 |
同义词
反义词
分开 | We need to separate the layers to analyze each material individually. | 我们需要将这些层分开,以便单独分析每种材料。 | |
分离 | 在高温下,组件会分离。 |
例句
1.Influence of CVD and LIC densification processes on mechanical properties, especially interlaminate shear strength(ILSS) of carbon cloth reinforced 2D C/C composites is studied.
研究了液相浸渍及化学气相法致密工艺对二维炭炭(2DC C)复合材料力学性能的影响,尤其是对层间剪切强度(ILSS)的影响。
2.Influence of CVD and LIC densification processes on mechanical properties, especially interlaminate shear strength(ILSS) of carbon cloth reinforced 2D C/C composites is studied.
研究了液相浸渍及化学气相法致密工艺对二维炭炭(2DC C)复合材料力学性能的影响,尤其是对层间剪切强度(ILSS)的影响。
3.To achieve a lightweight yet strong material, they chose to interlaminate carbon fiber with resin.
为了获得轻便而坚固的材料,他们选择将碳纤维与树脂交错层压。
4.The architect specified that the walls should be interlaminate with soundproofing layers.
建筑师指定墙壁应交错层压隔音层。
5.The engineers decided to interlaminate different materials to enhance the strength of the composite structure.
工程师决定将不同材料交错层压以增强复合结构的强度。
6.The new product features an interlaminate design that improves thermal insulation.
新产品采用了交错层压设计,改善了热绝缘性能。
7.In the manufacturing process, we need to interlaminate the plastic and metal layers for better durability.
在制造过程中,我们需要将塑料和金属层交错层压以提高耐用性。
作文
In the world of materials science and engineering, the term interlaminate refers to the process by which two or more layers of materials are bonded together. This bonding can occur through various methods, including adhesive bonding, thermal bonding, or mechanical fastening. The significance of interlaminate structures lies in their ability to combine the properties of different materials, resulting in composites that exhibit enhanced performance characteristics compared to their individual components. For instance, in aerospace applications, engineers often interlaminate lightweight carbon fiber with a resin matrix to create a material that is both strong and lightweight, crucial for fuel efficiency and structural integrity.The process of interlaminate also plays a vital role in the production of laminated glass, which is commonly used in buildings and vehicles. In this case, layers of glass are interlaminated with a plastic interlayer, providing not only strength but also safety features, as the plastic holds the glass pieces together in the event of breakage. This example highlights how interlaminate technology contributes to advancements in safety and durability in construction and automotive industries.Moreover, the concept of interlaminate extends beyond just physical materials; it can also be applied in fields like electronics. In printed circuit boards (PCBs), multiple layers of conductive and insulating materials are interlaminated to create complex circuitry that can support advanced electronic functions. This layering technique allows for compact designs and improved performance of electronic devices, demonstrating the versatility and importance of interlaminate structures in modern technology.Understanding the mechanics behind interlaminate processes is crucial for engineers and designers who aim to innovate and improve existing products. By manipulating the properties of materials at the microscopic level, they can achieve desired outcomes such as increased strength, reduced weight, or enhanced thermal resistance. The ongoing research in interlaminate techniques continues to pave the way for new applications and improvements in various industries, from construction to consumer electronics.In conclusion, the term interlaminate encapsulates a critical aspect of material engineering that enables the creation of composite materials with superior properties. Whether in aerospace, construction, or electronics, the ability to interlaminate different materials has led to innovations that significantly impact our daily lives. As technology progresses, the relevance of interlaminate processes will likely expand, leading to even more advanced materials and applications in the future.
在材料科学和工程领域,术语interlaminate指的是将两种或多种材料层粘合在一起的过程。这种粘合可以通过多种方法实现,包括粘合剂粘合、热粘合或机械固定。interlaminate结构的重要性在于它们能够结合不同材料的特性,从而产生比单个组件表现更优越的复合材料。例如,在航空航天应用中,工程师通常将轻质碳纤维与树脂基体interlaminate在一起,以创建一种既强大又轻便的材料,这对于燃油效率和结构完整性至关重要。interlaminate过程在夹层玻璃的生产中也起着至关重要的作用,夹层玻璃通常用于建筑和车辆。在这种情况下,玻璃层与塑料中间层interlaminate在一起,不仅提供强度,还提供安全特性,因为塑料在破裂时将玻璃片保持在一起。这个例子突显了interlaminate技术如何为建筑和汽车工业的安全性和耐用性进步做出贡献。此外,interlaminate的概念不仅限于物理材料;它还可以应用于电子领域。在印刷电路板(PCB)中,多层导电和绝缘材料被interlaminate在一起,以创建支持先进电子功能的复杂电路。这种分层技术允许紧凑设计和提高电子设备的性能,展示了interlaminate结构在现代技术中的多样性和重要性。理解interlaminate过程背后的机制对旨在创新和改善现有产品的工程师和设计师至关重要。通过在微观层面操纵材料的特性,他们可以实现所需的结果,例如增加强度、减轻重量或增强热阻。对interlaminate技术的持续研究继续为各个行业的新应用和改进铺平道路,从建筑到消费电子产品。总之,术语interlaminate概括了材料工程的一个关键方面,使得具有优越特性的复合材料的创建成为可能。无论是在航空航天、建筑还是电子领域,interlaminate不同材料的能力导致了显著影响我们日常生活的创新。随着技术的进步,interlaminate过程的相关性可能会扩大,从而在未来带来更先进的材料和应用。