isotropically
简明释义
英[ˌaɪsəˈtrɒpɪkli]美[ˌaɪsəˈtrɑpɪkli]
各向同性的
等轴性的(亦作 isotropous)
英英释义
In a manner that is the same in all directions; having uniform properties in all orientations. | 以在所有方向上都相同的方式;在所有方向上具有均匀特性的。 |
单词用法
各向同性散射 | |
各向同性排列 | |
各向同性弹性材料 | |
各向同性辐射源 |
同义词
均匀地 | The material expands uniformly in all directions when heated. | 材料在加热时向各个方向均匀膨胀。 | |
均质地 | The substance is distributed homogeneously throughout the solution. | 该物质在溶液中均质分布。 | |
平等地 | 该力在物体的两侧平等作用。 |
反义词
各向异性地 | 该材料在应力下表现出各向异性。 |
例句
1.Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate so that the long-time coherent integration can be obtained.
本文研究了稀布阵综合脉冲孔径雷达的长时间相干积累特点及其存在的问题;
2.And so that energy goes out radially, symmetrically, isotropically in all directions, and so it's very easy.
因此能量是呈放射状的,对称的,等效全向的辐射,向各个方向,因此很简单。
3.Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate so that the long-time coherent integration can be obtained.
本文研究了稀布阵综合脉冲孔径雷达的长时间相干积累特点及其存在的问题;
4.In the simulation, the stress was applied isotropically (各向同性地) to analyze the material's behavior.
在模拟中,施加的应力是isotropically (各向同性地) 的,以分析材料的行为。
5.The material was tested to ensure it expands isotropically (各向同性地) under temperature changes.
该材料经过测试,以确保在温度变化下它的膨胀是isotropically (各向同性地) 的。
6.The laser beam is designed to emit light isotropically (各向同性地) in order to achieve uniform illumination.
激光束被设计为以isotropically (各向同性地) 发出光线,以实现均匀照明。
7.The fluid flows isotropically (各向同性地) in all directions within the porous medium.
流体在多孔介质中以isotropically (各向同性地) 的方式向各个方向流动。
8.In an isotropically (各向同性地) conductive material, electrical resistance is the same regardless of direction.
在一个isotropically (各向同性地) 导电的材料中,电阻无论方向如何都是相同的。
作文
In the field of physics and engineering, understanding the behavior of materials under various conditions is crucial for innovation and development. One important concept that often arises in these discussions is the idea of how materials respond to forces or changes in their environment. Specifically, when we talk about materials that behave uniformly in all directions, we refer to them as behaving isotropically. This means that the properties of the material do not change regardless of the direction in which they are measured. For instance, a perfect isotropic material would have the same strength, elasticity, and thermal conductivity whether you measure it horizontally, vertically, or diagonally.The significance of isotropically behaving materials can be observed in various applications. Take, for example, the construction industry. When engineers design buildings, they often use isotropic materials like concrete and steel because these materials provide predictable performance under stress. If a building were made from a material that was not isotropic, it could potentially fail in unexpected ways, leading to catastrophic consequences. Therefore, knowing that materials like steel behave isotropically allows engineers to confidently design structures that can withstand forces such as wind, earthquakes, and other environmental factors.Moreover, the concept of isotropically can also apply to fields such as fluid dynamics. When analyzing the flow of fluids, if a fluid is considered to be isotropic, it means that its viscosity remains constant regardless of the direction of flow. This simplifies the mathematical models used to predict fluid behavior, making it easier for scientists and engineers to design systems such as pipelines and water treatment facilities. If the fluid were anisotropic, meaning its properties varied with direction, the calculations would become significantly more complex and less reliable.Understanding how materials and fluids behave isotropically is not only essential for practical applications but also for theoretical research. In material science, researchers often strive to create new materials that exhibit isotropic properties for specific uses. For example, scientists are developing advanced composites that combine different materials to achieve isotropic characteristics, enhancing performance in applications ranging from aerospace to electronics. The ability to manipulate the microstructure of materials to achieve isotropically uniform properties opens up new possibilities for innovation.In conclusion, the concept of isotropically behaving materials is fundamental across various disciplines, including engineering, physics, and material science. It allows for the reliable design and analysis of structures and systems, ensuring safety and efficiency. As technology advances, the quest for new materials that exhibit isotropically uniform properties will continue to drive research and development, leading to improved performance in countless applications. Understanding this concept not only enhances our knowledge of material behavior but also equips us with the tools necessary to address the challenges of modern engineering and technology.
在物理和工程领域,理解材料在各种条件下的行为对创新和发展至关重要。一个经常出现在这些讨论中的重要概念是材料如何响应力或环境变化。具体来说,当我们谈论在所有方向上均匀表现的材料时,我们称其为行为各向同性。这意味着材料的性质无论在何种方向上测量都不会改变。例如,一个完美的各向同性材料无论你是水平、垂直还是对角线测量,都具有相同的强度、弹性和热导率。各向同性材料的重要性可以在各种应用中观察到。以建筑行业为例。当工程师设计建筑物时,他们通常使用如混凝土和钢铁等各向同性材料,因为这些材料在应力下提供可预测的性能。如果一座建筑是由一种非各向同性的材料制成的,它可能会以意想不到的方式失败,导致灾难性的后果。因此,知道像钢铁这样的材料表现为各向同性使工程师能够自信地设计能够承受风、地震和其他环境因素的结构。此外,各向同性的概念也适用于流体动力学。当分析流体流动时,如果一个流体被认为是各向同性的,这意味着它的粘度无论流动方向如何都保持不变。这简化了用于预测流体行为的数学模型,使科学家和工程师更容易设计管道和水处理设施等系统。如果流体是各向异性的,意味着其性质随方向而变化,那么计算将变得复杂得多且不可靠。理解材料和流体如何表现为各向同性不仅对实际应用至关重要,而且对理论研究也是如此。在材料科学中,研究人员通常努力创造在特定用途上表现出各向同性特性的新的材料。例如,科学家正在开发先进复合材料,将不同材料结合在一起,以实现各向同性特性,提高航空航天到电子产品等应用的性能。操控材料的微观结构以实现各向同性均匀特性为创新开辟了新的可能性。总之,各向同性材料的概念是各个学科的基础,包括工程、物理和材料科学。它允许对结构和系统进行可靠的设计和分析,确保安全和效率。随着技术的进步,追求表现出各向同性均匀特性的材料的新材料将继续推动研究和开发,改善无数应用的性能。理解这一概念不仅增强了我们对材料行为的认识,而且还为我们提供了应对现代工程和技术挑战所需的工具。