protium

简明释义

[ˈprəʊtɪəm][ˈprotɪəm]

n. [核] 氕(氢的同位元素)

英英释义

Protium is the most abundant isotope of hydrogen, consisting of one proton and no neutrons in its nucleus.

氕是氢的最丰富同位素,其核内包含一个质子和零个中子。

单词用法

protium isotope

氕同位素

hydrogen with one proton (protium)

含有一个质子的氢(氕)

natural abundance of protium

氕的自然丰度

protium and deuterium comparison

氕与氘的比较

同义词

hydrogen

Protium is the most abundant isotope of hydrogen.

氢的同位素protium是最丰富的。

H-1

氢-1

In nuclear reactions, protium can participate as a reactant.

在核反应中,protium可以作为反应物参与。

反义词

deuterium

Deuterium is used in nuclear reactors as a moderator.

氘常用于核反应堆作为调节剂。

tritium

Tritium is used in self-luminous devices like watches.

氚用于自发光设备,如手表。

例句

1.Is called protium or light hydrogen.

称为氕或轻氢。

2.Is called protium or light hydrogen.

称为氕或轻氢。

3.When water is formed, it can contain protium or its isotopes, deuterium and tritium.

当水形成时,它可以包含质子氢或其同位素,重氢和氚。

4.In nuclear reactions, protium can be used as a fuel source.

在核反应中,质子氢可以用作燃料源。

5.The simplest form of hydrogen is known as protium, which has one proton and no neutrons.

氢的最简单形式被称为质子氢,它具有一个质子和零个中子。

6.The abundance of protium in the universe is significantly higher than that of its isotopes.

质子氢在宇宙中的丰度显著高于其同位素。

7.Scientists often study protium to understand basic hydrogen properties.

科学家们常常研究质子氢以理解基本的氢特性。

作文

In the vast realm of chemistry, there exists a fundamental concept that underpins much of our understanding of atomic structure: isotopes. Among these isotopes, one of the most prevalent and intriguing is hydrogen's most common isotope, known as protium. This simple yet essential element plays a crucial role in various scientific fields, from nuclear physics to biochemistry.To understand protium, we must first delve into the world of hydrogen. Hydrogen, the lightest and most abundant element in the universe, has three primary isotopes: protium, deuterium, and tritium. While all three isotopes share the same number of protons, they differ in their neutron count. Protium, specifically, has one proton and no neutrons, making it the simplest isotope of hydrogen. This unique characteristic not only defines its identity but also contributes to its widespread occurrence in nature.The significance of protium extends beyond its atomic structure. In the realm of chemistry, it serves as a building block for countless compounds, including water (H2O). When two protium atoms bond with one oxygen atom, they form water, a substance vital for all known forms of life. The presence of protium in water molecules is essential for various biological processes, such as cellular respiration and photosynthesis, highlighting its importance in sustaining life on Earth.Moreover, protium is pivotal in nuclear reactions, particularly in stars. During the process of nuclear fusion, hydrogen nuclei combine to form helium, releasing an immense amount of energy in the process. This energy is what powers our sun and other stars, illuminating the cosmos and providing heat and light to our planet. The role of protium in stellar nucleosynthesis emphasizes its significance not only in chemistry but also in astrophysics.In addition to its natural occurrences, protium has practical applications in various industries. For instance, in the field of nuclear medicine, protium is often used in the production of certain radiopharmaceuticals. These substances are essential for medical imaging and cancer treatment, showcasing how this simple isotope can have profound implications for human health.Furthermore, research involving protium continues to expand our understanding of fundamental physics. Experiments conducted at particle accelerators explore the properties of protium and its interactions with other particles, contributing to our knowledge of quantum mechanics and the fundamental forces of nature. Such studies not only enhance our comprehension of the universe but also pave the way for technological advancements.In conclusion, protium may seem like a basic concept in the field of chemistry, but its implications are far-reaching. From its role in the formation of water to its involvement in nuclear fusion and medical applications, protium is a cornerstone of both scientific inquiry and practical innovation. Understanding this isotope allows us to appreciate the intricate connections between the elements that compose our world and the fundamental processes that govern the universe. As we continue to explore the mysteries of matter and energy, protium will undoubtedly remain a key player in our quest for knowledge.

在化学的广阔领域中,存在着一个基本概念,它支撑着我们对原子结构的理解:同位素。在这些同位素中,氢的最常见同位素之一,即被称为质子的元素,是一种既简单又重要的元素,在多个科学领域中发挥着至关重要的作用,从核物理学到生物化学。要理解质子,我们首先必须深入氢的世界。氢是宇宙中最轻、最丰富的元素,主要有三种同位素:质子、氘和氚。虽然这三种同位素具有相同数量的质子,但它们在中子数量上有所不同。具体来说,质子只有一个质子和零个中子,使其成为氢的最简单同位素。这一独特特性不仅定义了它的身份,还使其在自然界中普遍存在。质子的重要性超越了其原子结构。在化学领域,它作为无数化合物的基石,包括水(H2O)。当两个质子原子与一个氧原子结合时,它们形成水,这是一种对所有已知生命形式至关重要的物质。质子在水分子中的存在对于各种生物过程至关重要,例如细胞呼吸和光合作用,突显了它在维持地球生命方面的重要性。此外,质子在核反应中也是关键,特别是在恒星中。在核聚变过程中,氢核结合形成氦,同时释放出大量能量。这种能量是我们太阳和其他恒星的动力,照亮了宇宙并为我们的星球提供热量和光明。质子在恒星核合成中的作用强调了它在化学和天体物理学中的重要性。除了其自然存在之外,质子在各个行业中也有实际应用。例如,在核医学领域,质子常用于某些放射性药物的生产。这些物质对于医学成像和癌症治疗至关重要,展示了这个简单同位素对人类健康的深远影响。此外,涉及质子的研究不断扩展我们对基本物理学的理解。在粒子加速器上进行的实验探讨了质子的性质及其与其他粒子的相互作用,为我们对量子力学和自然基本力的知识做出了贡献。这些研究不仅增强了我们对宇宙的理解,也为技术进步铺平了道路。总之,质子在化学领域可能看似一个基本概念,但其影响深远。从它在水形成中的角色到它在核聚变和医学应用中的参与,质子是科学探究和实际创新的基石。理解这一同位素使我们能够欣赏构成我们世界的元素之间的复杂联系,以及支配宇宙的基本过程。随着我们继续探索物质和能量的奥秘,质子无疑将继续在我们追求知识的过程中扮演关键角色。