thermionic

简明释义

[θɜrˈmaɪənɪk][θɜrˈmaɪənɪk]

adj. 热电子的,[物] 热离子的

英英释义

Relating to or involving the emission of electrons from a heated material, typically a metal, due to thermal energy.

与由于热能而从加热材料(通常是金属)中发射电子相关或涉及的。

单词用法

同义词

electron emission

电子发射

Thermionic emission is a process used in vacuum tubes.

热离子发射是真空管中使用的一种过程。

thermionic emission

热离子发射

Electron emission occurs when electrons gain enough thermal energy.

电子发射发生在电子获得足够的热能时。

反义词

cold cathode

冷阴极

Cold cathode displays are used in various electronic devices.

冷阴极显示器被用于各种电子设备中。

non-thermionic

非热电子

Non-thermionic electron sources can provide advantages in certain applications.

非热电子源在某些应用中可以提供优势。

例句

1.Emission spectroscopic techniques are employed to study the loss of thermionic emission material barium from the cathode of a T12 fluorescent lamp.

应用发射光谱技术研究了T12荧光灯阴极电子发射材料钡的损失。

2.Averaging method of neighborhood and medium filtering method are used to effectively overcome thermionic noise as result of courses of image transferring, gathering and quantization and so on.

对由于图像采集、传输、量化过程中产生的热电子噪声,利用了邻域平均和加权中值滤波方法来有效地减小。

3.For this purpose, several kinds of laser-driven photocathodes, and some thermionic cathodes and field emission cathodes are applied.

为此,人们采用各种类型的激光驱动光电阴极、一些热阴极和场致发射阴极作为电子源。

4.Finally, our simulation result shows that conventional SOI SBSD-MOSFET can effectively suppress thermionic emission leakage current, but it still can not suppress tunneling leakage current.

最后,我们的模拟发现,普通soi结构SBSD - MOSFET能有效阻挡来自源结的热电子发射泄漏电流,但仍不能阻挡来自漏结的隧穿泄漏电流。

5.Averaging method of neighborhood and medium filtering method are used to effectively overcome thermionic noise as result of courses of image transferring, gathering and quantization and so on.

对由于图像采集、传输、量化过程中产生的热电子噪声,利用了邻域平均和加权中值滤波方法来有效地减小。

6.The results show that the efficiency approaches to that of the caesium thermionic energy converter.

结果表明其效率与铯热离子换能器相近。

7.The efficiency of thermionic 热电子的 devices can be improved by optimizing material properties.

通过优化材料特性,可以提高热电子的设备的效率。

8.In a thermionic 热电子的 converter, heat is directly converted into electrical energy.

在一个热电子的转换器中,热量被直接转化为电能。

9.The thermionic 热电子的 effect is utilized in many high-temperature applications.

许多高温应用中都利用了热电子的效应。

10.Research on thermionic 热电子的 emission has applications in modern electronics.

热电子的发射的研究在现代电子学中具有应用价值。

11.The thermionic 热电子的 emission from the filament is crucial for the operation of vacuum tubes.

灯丝的热电子的发射对于真空管的操作至关重要。

作文

The study of electron emission has led to significant advancements in various fields of science and technology. One of the most intriguing phenomena related to this is known as thermionic emission. This process occurs when electrons are emitted from a heated material, typically a metal or semiconductor, due to thermal energy. Understanding thermionic emission is crucial for the development of devices such as vacuum tubes, cathode ray tubes, and certain types of transistors.In essence, thermionic emission involves the excitation of electrons within a material. As the temperature of the material increases, the thermal energy provided allows some electrons to overcome the work function—the minimum energy required to remove an electron from the surface of the material. This results in the release of free electrons into the surrounding environment, which can then be harnessed for various applications.Historically, thermionic devices played a pivotal role in the evolution of electronics. For instance, vacuum tubes, which rely on thermionic emission, were essential for early radio technology and amplification systems. These tubes allowed for the modulation and amplification of electrical signals, paving the way for the development of modern communication technologies.As technology progressed, the limitations of vacuum tubes became apparent. They were bulky, consumed a significant amount of power, and generated considerable heat. This led to the invention of solid-state devices, which operate on different principles, such as semiconductor physics. However, the understanding of thermionic emission still holds relevance today, particularly in niche applications where high power and high-frequency performance are required.One notable application of thermionic emission is in space exploration. Spacecraft often utilize thermionic converters to generate electricity from heat produced by radioactive decay. These converters can efficiently transform thermal energy into electrical energy, making them ideal for long-duration missions where solar power may not be feasible.Additionally, researchers are investigating the potential of thermionic emission in advanced materials and nanotechnology. By manipulating the properties of materials at the nanoscale, scientists aim to enhance thermionic efficiency and develop new types of electronic components that could outperform traditional devices. This research could lead to breakthroughs in energy conversion, computing, and telecommunications.In conclusion, the concept of thermionic emission is a fascinating area of study that bridges the gap between thermal physics and electronic engineering. Its historical significance and potential future applications underscore the importance of understanding this phenomenon. As we continue to explore new technologies and materials, the principles of thermionic emission may play a critical role in shaping the next generation of electronic devices and systems. By delving deeper into this subject, we can unlock new possibilities that will drive innovation and progress in various fields, from space exploration to everyday electronics.

电子发射的研究已经在科学和技术的各个领域带来了重大进展。与此相关的一个最引人入胜的现象被称为热离子发射。这一过程发生在加热材料(通常是金属或半导体)中,当其温度升高时,电子由于热能而被发射出来。理解热离子发射对真空管、阴极射线管和某些类型的晶体管等设备的发展至关重要。本质上,热离子发射涉及材料内电子的激发。当材料的温度升高时,提供的热能使一些电子克服功函数——即从材料表面移除电子所需的最小能量。这导致自由电子释放到周围环境中,然后可以被用于各种应用。历史上,热离子设备在电子学的发展中发挥了关键作用。例如,依赖于热离子发射的真空管是早期无线电技术和放大系统的基础。这些管子允许电信号的调制和放大,为现代通信技术的发展铺平了道路。随着技术的进步,真空管的局限性变得明显。它们体积庞大,消耗大量电力,并且产生相当大的热量。这导致了固态设备的发明,这些设备基于不同的原理,如半导体物理。然而,理解热离子发射在今天仍然具有相关性,特别是在需要高功率和高频性能的利基应用中。热离子发射的一个显著应用是在太空探索中。航天器通常利用热离子转换器将放射性衰变产生的热量转化为电力。这些转换器能够有效地将热能转化为电能,使其成为长期任务的理想选择,在这些任务中,太阳能可能不可行。此外,研究人员正在调查热离子发射在先进材料和纳米技术中的潜力。通过在纳米尺度上操纵材料的属性,科学家们旨在增强热离子效率并开发出新型电子元件,这些元件可能超越传统设备。这项研究可能导致能源转换、计算和电信领域的突破。总之,热离子发射的概念是一个迷人的研究领域,它架起了热物理学和电子工程之间的桥梁。它的历史意义和潜在未来应用突显了理解这一现象的重要性。随着我们继续探索新技术和材料,热离子发射的原理可能在塑造下一代电子设备和系统中发挥关键作用。通过深入研究这一主题,我们可以解锁新的可能性,从而推动各个领域的创新和进步,从太空探索到日常电子产品。