compressional
简明释义
adj. 有压缩性的;与压缩有关的
英英释义
Relating to or resulting from compression, especially in the context of forces that push or squeeze materials together. | 与压缩相关或由压缩引起,特别是在推动或挤压材料在一起的力量的背景下。 |
单词用法
压缩波 |
同义词
压缩的 | The constrictive forces in the Earth's crust can lead to earthquakes. | 地壳中的压缩力可能导致地震。 | |
挤压的 | The squeezing action of the hydraulic press is used to shape metal. | 液压机的挤压作用用于成型金属。 | |
施压的 | 按压气球使其形状发生变化。 |
反义词
拉伸的 | Tensile strength is crucial for materials used in construction. | 拉伸强度对建筑材料至关重要。 | |
扩展的 | The expansive nature of the material allows it to fill larger spaces. | 该材料的扩展特性使其能够填充更大的空间。 |
例句
1.Three component data acquisition with compressional wave source was applied to YC area for predicting fracture reservoir characters.
为了探测yc地区裂隙型储层特征,在该区进行了纵波源三分量数据采集。
2.In Longling fault zone and the area north to it, the direction of maximum compressional stress is near NS or NNW, the stress regime is of strike slip type.
龙陵断裂带及其以北的局部地区,最大主压应力方向为近南北或北北西,应力结构为走滑型。
3.This paper studies the scattering of plane compressional waves by a spherical inhomogeneity with a sliding interface embedded in an infinite homogenous media.
本文研究了无限各向同性基体中的滑动界面球形单夹杂对平面压缩波的散射问题。
4.It is of importance to interpretations of seismic data from compressional basins.
这对于挤压型盆地中的地震资料解释具有重要意义。
5.The results of these models indicate that substrate contraction has important influence on the deformational characteristics of compressional structures.
这些模型的实验结果表明,基底收缩对挤压构造变形特征具有重要的影响。
6.Kuche foreland basin thrust belt is strong compressional stress zone. It comes into being various complicated overriding structural style.
库车前陆盆地山前构造带为强挤压应力区,形成了各种复杂的推覆构造样式。
7.And the velocity of slow compressional-wave (P-wave) is in direct proportion to the porosity and the density of fluid.
而慢纵波的速度则和孔隙度和流体的密度成正比。
8.The compressional stress mainly comes from SW, and the NE direction ACTS as a resistance.
挤压应力主要来自南西方向、北东方向起阻挡作用。
9.Conclusion: The time-frequency parameters are more sensitive in monitoring spinal cord compressional injury in rat than those in time domain.
结论:诱发电位时频参数比时域参数能更灵敏地反映大鼠脊髓压迫损伤。
10.The compressional 压缩的 forces in the tectonic plates can lead to mountain formation.
构造板块中的压缩的力量可以导致山脉的形成。
11.During an earthquake, compressional 压缩的 waves travel faster than shear waves.
在地震期间,压缩的波比剪切波传播得更快。
12.The geologist studied the compressional 压缩的 forces acting on the Earth's crust.
地质学家研究了作用于地壳上的压缩的力量。
13.The engineers designed a new material to withstand compressional 压缩的 stress.
工程师们设计了一种新材料,以承受压缩的应力。
14.In a compressional 压缩的 wave, particles move in the same direction as the wave.
在压缩的波中,粒子沿着波的方向移动。
作文
In the field of geology, understanding the forces that shape our planet is crucial. One of the most significant types of stress that rocks experience is known as compressional (压缩的) stress. This occurs when rocks are pushed together, causing them to fold or fracture. The study of compressional (压缩的) forces is essential for geologists who seek to understand the formation of mountains, earthquakes, and other geological phenomena.When two tectonic plates collide, they exert compressional (压缩的) stress on each other. This interaction can lead to the creation of mountain ranges, such as the Himalayas, which were formed by the collision of the Indian and Eurasian plates. The immense pressure from these compressional (压缩的) forces causes the Earth's crust to buckle and fold, resulting in the dramatic landscapes we see today.Moreover, compressional (压缩的) forces are not limited to large-scale geological events. They also play a role in the formation of various rock types. For instance, sedimentary rocks can be formed through the accumulation of sediments that undergo compressional (压缩的) stress over time. As layers of sediment build up, the weight of the overlying material compresses the lower layers, transforming loose particles into solid rock. This process highlights the importance of compressional (压缩的) stress in the rock cycle.In addition to their geological implications, compressional (压缩的) forces can also have practical applications in engineering. For example, when designing buildings and bridges, engineers must consider the compressional (压缩的) forces that will act on their structures. Materials like concrete and steel are chosen for their ability to withstand these forces without failing. Understanding how compressional (压缩的) stress affects materials is vital for ensuring the safety and longevity of infrastructure.Furthermore, the concept of compressional (压缩的) waves is fundamental in the study of seismology. When an earthquake occurs, it generates seismic waves that travel through the Earth. There are two main types of seismic waves: primary (P) waves and secondary (S) waves. P waves are compressional (压缩的) waves, meaning they move by compressing and expanding the material they travel through. This property allows them to travel faster than S waves, which are shear waves that move perpendicular to the direction of wave propagation. Understanding these compressional (压缩的) waves helps scientists locate the epicenter of earthquakes and assess their potential impact.In conclusion, the term compressional (压缩的) encompasses a range of phenomena in geology, engineering, and seismology. From the formation of mountains to the design of resilient structures, compressional (压缩的) forces play a vital role in shaping our world. By studying these forces, we gain insights into the processes that govern the Earth’s dynamics and enhance our ability to predict and respond to natural disasters. Therefore, a thorough understanding of compressional (压缩的) stress is essential for both scientists and engineers alike.
在地质学领域,理解塑造我们星球的力量至关重要。岩石经历的最显著的压力类型之一被称为compressional(压缩的)压力。当岩石相互挤压时,会导致它们折叠或断裂。研究compressional(压缩的)力量对希望理解山脉、地震和其他地质现象的地质学家而言至关重要。当两个构造板块碰撞时,它们会对彼此施加compressional(压缩的)压力。这种相互作用可以导致山脉的形成,例如喜马拉雅山脉,它是由印度板块和欧亚板块的碰撞形成的。这些compressional(压缩的)力量所产生的巨大压力使地壳发生弯曲和折叠,形成了我们今天所看到的戏剧性地貌。此外,compressional(压缩的)力量不仅限于大规模的地质事件。它们在各种岩石类型的形成中也发挥着作用。例如,沉积岩可以通过沉积物的积累而形成,这些沉积物随着时间的推移受到compressional(压缩的)压力。随着沉积层的堆积,上覆材料的重量压缩下层,转变为固体岩石。这个过程突显了compressional(压缩的)压力在岩石循环中的重要性。除了它们的地质意义外,compressional(压缩的)力量在工程中的实际应用也非常重要。例如,在设计建筑和桥梁时,工程师必须考虑施加在结构上的compressional(压缩的)力量。混凝土和钢材等材料因其能够承受这些力量而被选用。理解compressional(压缩的)压力如何影响材料对于确保基础设施的安全和耐久性至关重要。此外,compressional(压缩的)波的概念在地震学研究中是基础。当地震发生时,会产生穿越地球的地震波。地震波主要有两种类型:初级(P)波和次级(S)波。P波是compressional(压缩的)波,这意味着它们通过压缩和扩展它们所经过的材料来移动。这一特性使得它们比S波传播得更快,后者是垂直于波传播方向移动的剪切波。理解这些compressional(压缩的)波有助于科学家定位地震的震中并评估其潜在影响。总之,术语compressional(压缩的)涵盖了地质学、工程学和地震学中的一系列现象。从山脉的形成到坚固结构的设计,compressional(压缩的)力量在塑造我们的世界中扮演着重要角色。通过研究这些力量,我们获得了关于支配地球动态过程的见解,并增强了预测和应对自然灾害的能力。因此,深入理解compressional(压缩的)压力对科学家和工程师都是至关重要的。