interferometric
简明释义
英[ˌɪntəˌferəˈmetrɪk]美[ˈɪntərfɪroʊˈmetrɪk]
adj. 干涉仪的;用干涉仪测量的,干涉测量的
英英释义
单词用法
干涉成像 | |
干涉传感器 | |
干涉系统 | |
干涉图样 | |
进行干涉测量 | |
应用干涉技术 | |
分析干涉数据 | |
开发干涉方法 |
同义词
干涉的 | 干涉测量 | ||
基于干涉的 | 基于干涉的技术 |
反义词
例句
1.Furthermore, it integrates experimental images and particularly analyzes the physical meaning of digital shearography interferometric stripes.
此外,还结合实验图像详细分析了数字剪切散斑干涉条纹的物理意义。
2.Noise filtering for interferometric phase image, is one of key problems in InSAR imaging.
干涉相位图的降噪滤波,是干涉合成孔径雷达成像中必须的步骤之一。
3.In this paper, we mainly discussed the research and design of an interferometric micro-fiber-end inspector.
主要涉及干涉显微式光纤端面检测仪的设计与制作及其相关理论的实验研究。
4.In 2000, the interferometric gravitational wave detectors began their runs to accumulate data.
2000年激光干涉仪引力波探测器已开始收集数据。
5.This is the surface geometry for measurement of laser interferometric Profiler part of the software source code.
这是用于表面几何量测量的激光干涉式轮廓仪的软件部分源代码。
6.How to identify effectively PS from SAR images is one of the crucial procedures in data reduction of the PS interferometric system.
永久散射体的有效识别是干涉系统中的一个关键环节。
7.Researchers utilized interferometric 干涉测量 to analyze the surface profile of the material.
研究人员利用干涉测量分析材料的表面轮廓。
8.In the field of telecommunications, interferometric 干涉仪 can improve signal quality.
在电信领域,干涉仪可以提高信号质量。
9.The interferometric 干涉技术 allows for high-resolution imaging in optical systems.
这种干涉技术允许在光学系统中进行高分辨率成像。
10.The interferometric 干涉测量 method is essential for precision engineering applications.
这种干涉测量方法对于精密工程应用至关重要。
11.The interferometric 干涉仪 technique is widely used in astronomy to measure the distance to stars.
这种干涉仪技术在天文学中被广泛用于测量到星星的距离。
作文
Interferometry is a powerful technique used in various scientific fields, particularly in physics and engineering. The term interferometric refers to methods that utilize the principle of interference, which occurs when two or more waves overlap and combine to form a new wave pattern. This phenomenon can be observed with light, sound, and even electromagnetic waves. The applications of interferometric techniques are vast, ranging from astronomy to telecommunications, and they play a crucial role in advancing our understanding of the universe.In the field of astronomy, interferometric methods have revolutionized the way we observe celestial objects. For instance, radio telescopes employing interferometric techniques can combine signals from multiple antennas to create high-resolution images of distant galaxies and stars. This approach allows astronomers to gather more data than would be possible with a single telescope, thereby enhancing our ability to explore the cosmos. By analyzing the patterns created by the interference of radio waves, researchers can gain insights into the structure and behavior of astronomical phenomena.Another significant application of interferometric techniques is in the field of optical metrology. In this context, interferometric measurements are used to determine the precise dimensions and shapes of objects. For example, laser interferometric systems can measure minute changes in length with exceptional accuracy, making them invaluable for quality control in manufacturing processes. These systems rely on the interference of light waves to detect even the slightest variations in surface contours, ensuring that products meet stringent specifications.Moreover, interferometric techniques are also employed in the realm of telecommunications. Fiber optic communication systems utilize interferometric principles to enhance signal transmission and reduce noise. By analyzing the interference patterns generated by light traveling through fiber optic cables, engineers can optimize data transfer rates and improve overall network performance. This has led to faster internet speeds and more reliable communication systems, which are essential in today's digital age.In addition to these practical applications, the study of interferometric methods also contributes to fundamental research in physics. The investigation of interference patterns provides valuable information about the properties of waves, including their wavelength, frequency, and phase. This knowledge is crucial for developing new technologies and advancing our understanding of the physical world.Despite its many advantages, working with interferometric techniques can be challenging. The precision required in aligning instruments and controlling environmental factors can complicate experiments. However, advancements in technology continue to improve the reliability and accessibility of interferometric methods, making them more widely used across various disciplines.In conclusion, the term interferometric encapsulates a range of techniques that harness the power of wave interference to achieve remarkable results in science and technology. From enhancing astronomical observations to improving manufacturing processes and telecommunications, interferometric methods have become indispensable tools in modern research and industry. As we continue to explore the potential of these techniques, it is clear that they will play a vital role in shaping our understanding of the universe and driving innovation in the years to come.
干涉测量是一种在多个科学领域,特别是物理和工程中使用的强大技术。术语interferometric指的是利用干涉原理的方法,当两波或多波重叠并结合形成新的波动模式时,就会发生这种现象。这种现象可以用光、声甚至电磁波观察到。interferometric技术的应用范围广泛,从天文学到电信,它们在推动我们对宇宙的理解中发挥着至关重要的作用。在天文学领域,interferometric方法彻底改变了我们观察天体的方式。例如,采用interferometric技术的射电望远镜可以将多个天线的信号组合起来,创建遥远星系和恒星的高分辨率图像。这种方法使天文学家能够收集比单个望远镜更丰富的数据,从而增强我们探索宇宙的能力。通过分析射电波产生的干涉模式,研究人员可以深入了解天文现象的结构和行为。interferometric技术的另一个重要应用是在光学计量领域。在这种情况下,interferometric测量用于确定物体的精确尺寸和形状。例如,激光interferometric系统可以以极高的精度测量微小的长度变化,使其在制造过程中的质量控制中不可或缺。这些系统依赖于光波的干涉来检测表面轮廓的微小变化,确保产品符合严格的规格。此外,interferometric技术还被应用于电信领域。光纤通信系统利用interferometric原理来增强信号传输并减少噪声。通过分析光在光纤电缆中传播所产生的干涉模式,工程师可以优化数据传输速率并改善整体网络性能。这导致了更快的互联网速度和更可靠的通信系统,这在当今数字时代是必不可少的。除了这些实际应用外,interferometric方法的研究也为物理学的基础研究做出了贡献。对干涉模式的研究提供了关于波的特性的重要信息,包括它们的波长、频率和相位。这些知识对于开发新技术和推动我们对物理世界的理解至关重要。尽管有许多优点,但使用interferometric技术也可能面临挑战。对仪器进行精确对齐和控制环境因素所需的精度可能会使实验复杂化。然而,技术的进步继续提高interferometric方法的可靠性和可及性,使其在各个学科中得到更广泛的应用。总之,术语interferometric概括了一系列利用波干涉的力量来实现科学和技术卓越成果的技术。从增强天文观察到改善制造过程和电信,interferometric方法已成为现代研究和工业中不可或缺的工具。随着我们继续探索这些技术的潜力,显然它们将在塑造我们对宇宙的理解和推动未来几年的创新中发挥重要作用。