pyranose

简明释义

[ˈpaɪrənəʊs][ˈpaɪərənoʊs]

n. [有化] 吡喃糖

英英释义

A pyranose is a six-membered cyclic form of a monosaccharide that contains one oxygen atom and five carbon atoms.

吡喃糖是一种六元环的单糖形式,包含一个氧原子和五个碳原子。

单词用法

pyranose ring

吡喃环

pyranose form

吡喃糖形式

convert to pyranose

转化为吡喃糖

pyranose structure

吡喃糖结构

同义词

hexose

六碳糖

Pyranose forms are commonly found in sugars like glucose.

吡喃糖形式常见于葡萄糖等糖类中。

aldopentose

醛戊糖

Hexoses can exist in both linear and pyranose forms.

六碳糖可以以线性和吡喃糖形式存在。

ketopentose

酮戊糖

Aldopentoses and ketopentoses can also form pyranose structures.

醛戊糖和酮戊糖也可以形成吡喃糖结构。

反义词

furanose

呋喃糖

Furanose forms are commonly found in nucleotides.

呋喃糖形式常见于核苷酸中。

例句

1.A critical enzyme is pyranose oxidase, which releases H2O2 for use by the manganese dependent peroxidase enzyme.

关键酶是吡喃糖氧化酶,它释放出H 2 O 2供含锰的过氧化物酶利用。

2.A critical enzyme is pyranose oxidase, which releases H2O2 for use by the manganese dependent peroxidase enzyme.

关键酶是吡喃糖氧化酶,它释放出H 2 O 2供含锰的过氧化物酶利用。

3.The pyranose ring structure plays a crucial role in the reactivity of carbohydrates.

吡喃糖环结构在碳水化合物的反应性中起着至关重要的作用。

4.Scientists often study the properties of pyranose sugars to understand their role in biological systems.

科学家们常常研究吡喃糖的性质,以了解它们在生物系统中的作用。

5.In the presence of alcohol, the pyranose form of fructose is more stable than its furanose counterpart.

在醇的存在下,果糖的吡喃糖形式比其呋喃糖形式更稳定。

6.When analyzing the molecular structure of cellulose, researchers found that it predominantly exists as a pyranose.

在分析纤维素的分子结构时,研究人员发现它主要以吡喃糖的形式存在。

7.The sugar glucose can exist in both its linear form and as a cyclic structure called a pyranose.

糖分子葡萄糖可以以线性形式和一种称为吡喃糖的环状结构存在。

作文

In the realm of organic chemistry, the study of carbohydrates is essential for understanding biological processes. Among the various forms of sugars, one particularly interesting structure is the cyclic form known as pyranose. This term refers to a six-membered ring structure that is derived from aldoses, which are sugars containing an aldehyde group. The formation of a pyranose occurs when the hydroxyl group on the fifth carbon atom reacts with the carbonyl group at the first carbon atom, resulting in a stable ring configuration. The significance of pyranose lies not only in its structural properties but also in its role in biological systems. For instance, glucose, one of the most crucial monosaccharides, predominantly exists in its pyranose form in aqueous solutions. This cyclic form contributes to the molecule's stability and reactivity, allowing it to participate effectively in metabolic pathways. When examining the structure of pyranose, one can observe that it contains five carbon atoms and one oxygen atom within the ring. The spatial arrangement of these atoms leads to the formation of isomers, such as alpha and beta pyranose forms, which differ in the orientation of the hydroxyl group attached to the anomeric carbon (the first carbon in the ring). This difference is not merely a structural variation; it has profound implications for the reactivity and biological function of the sugars. Moreover, the concept of pyranose extends beyond glucose. Other sugars, such as galactose and mannose, can also adopt this cyclic structure. The ability of these sugars to exist in both linear and cyclic forms is a key feature of carbohydrate chemistry. It allows them to participate in various biochemical reactions and forms the basis for the synthesis of complex carbohydrates like starch and cellulose. In addition to their structural roles, pyranose forms of sugars are critical in cellular recognition processes. Glycoproteins and glycolipids, which contain carbohydrate moieties in pyranose form, play vital roles in cell signaling and communication. The specific interactions between these carbohydrates and proteins can influence numerous physiological processes, including immune responses and cellular adhesion. To sum up, the study of pyranose structures is fundamental to our understanding of carbohydrate chemistry and its applications in biology. The unique properties of these cyclic forms enable them to participate in a variety of biochemical processes, making them indispensable to life. As research continues to uncover the intricacies of carbohydrate interactions, the importance of pyranose will undoubtedly remain a focal point in the fields of biochemistry and molecular biology.

在有机化学领域,碳水化合物的研究对于理解生物过程至关重要。在各种糖的形式中,一种特别有趣的结构是称为吡喃糖的环状形式。这个术语指的是一种六元环结构,它源自含有醛基的醛糖。当第五个碳原子上的羟基与第一个碳原子上的羰基反应时,就会形成吡喃糖,从而产生一个稳定的环状构型。吡喃糖的重要性不仅体现在其结构特性上,还体现在其在生物系统中的作用。例如,葡萄糖作为最重要的单糖之一,在水溶液中主要以其吡喃糖形式存在。这种环状形式有助于分子的稳定性和反应性,使其能够有效参与代谢途径。在检查吡喃糖的结构时,可以观察到它在环内包含五个碳原子和一个氧原子。这些原子的空间排列导致了异构体的形成,例如α和β吡喃糖形式,它们在连接到首碳(环中的第一个碳)的羟基的取向上有所不同。这种差异不仅仅是结构上的变化;它对糖的反应性和生物功能具有深远的影响。此外,吡喃糖的概念超越了葡萄糖。其他糖类,如半乳糖和甘露糖,也可以采用这种环状结构。这些糖类能够以线性和环状形式存在是碳水化合物化学的一个关键特征。它使得它们能够参与各种生化反应,并为淀粉和纤维素等复杂碳水化合物的合成奠定基础。除了它们的结构角色外,吡喃糖形式的糖在细胞识别过程中也至关重要。含有碳水化合物部分的糖蛋白和糖脂以吡喃糖形式存在,在细胞信号传递和交流中发挥着重要作用。这些碳水化合物与蛋白质之间的特定相互作用可以影响许多生理过程,包括免疫反应和细胞粘附。总之,吡喃糖结构的研究是我们理解碳水化合物化学及其在生物学中应用的基础。这些环状形式的独特属性使它们能够参与各种生化过程,使它们对生命不可或缺。随着研究继续揭示碳水化合物相互作用的复杂性,吡喃糖的重要性无疑将继续成为生物化学和分子生物学领域的焦点。