isomers
简明释义
n. [化学]同分异构体(isomer 的复数)
英英释义
Isomers are compounds that have the same molecular formula but different structural arrangements of atoms, resulting in different properties. | 异构体是指具有相同分子式但原子结构排列不同的化合物,从而导致其性质不同。 |
单词用法
结构异构体 | |
几何异构体 | |
光学异构体 | |
一种化合物的异构体 | |
不同的异构体 | |
异构体可以具有不同的性质 |
同义词
反义词
同聚物 | 同聚物常用于聚合物化学中。 | ||
单体 | 单体是聚合物的基本构件。 |
例句
1.The separation of the optic isomers of a rice paddy herbicide naproanilide was studied by high-performance liquid chromatography.
采用高效液相色谱法分离水田除草剂萘丙胺光学异构体。
2.Use of stereoselective or stereospecific synthetic methods or separation of racemic mixtures can be used to obtain individual optical isomers.
可以使用立体选择或立体专一的合成方法,或者外消旋混合物的分离,来获得单独的光学异构体。
3.Including cis isomers, 20 new cinnamamides were synthesized.
包括顺式导构体,共合成了20个新化合物。
4.They are said to be conformational isomers also called conformers.
它们叫做构象异构体,也叫做异象体。
5.Residues of thidiazuron and its isomers were determined in cotton seeds and soil.
噻苯隆及其异构体在棉籽和土壤中残留量测定方法。
6.Asymmetric synthesis: Chemical reaction by which unequal amounts of two product isomers are formed.
不对称合成法:在化合物中形成两种不等数量的同分异构体的化学反应。
7.Such molecules are known as enantiomorphs or optical isomers.
这种分子被称为对映结构体或旋光异物体。
8.The study of isomers (异构体) is crucial for drug development.
对异构体(isomers)的研究对药物开发至关重要。
9.Geometric isomers (几何异构体) can occur in compounds with double bonds.
在含有双键的化合物中,可以出现几何异构体(isomers)。
10.In organic chemistry, we often study different types of isomers (异构体) to understand their unique properties.
在有机化学中,我们常常研究不同类型的异构体(isomers)以了解它们独特的性质。
11.Structural isomers (结构异构体) have the same molecular formula but different connectivity.
结构异构体(isomers)具有相同的分子式但不同的连接方式。
12.The two isomers (异构体) of butanol have different boiling points.
丁醇的两个异构体(isomers)具有不同的沸点。
作文
Isomers are fascinating entities in the field of chemistry that illustrate the complexity and diversity of molecular structures. Essentially, isomers(异构体) are compounds that share the same molecular formula but differ in the arrangement of atoms. This difference in arrangement leads to distinct physical and chemical properties, making isomers(异构体) a crucial topic for chemists and researchers alike.To understand isomers(异构体) better, we can categorize them into two main types: structural isomers and stereoisomers. Structural isomers have the same molecular formula but differ in how the atoms are connected to each other. For instance, butanol (C4H10O) has several structural isomers, including n-butanol and isobutanol. Each of these compounds has unique characteristics and applications, which highlight the importance of molecular structure in determining the behavior of substances.On the other hand, stereoisomers have the same connectivity of atoms but differ in the spatial arrangement of those atoms. This can be further divided into geometric isomers and optical isomers. Geometric isomers occur due to restricted rotation around a bond, such as in cis-trans isomerism, where the relative positions of substituents differ. Optical isomers, or enantiomers, are particularly interesting because they are non-superimposable mirror images of each other. These isomers(异构体) can have vastly different effects in biological systems, such as how they interact with enzymes or receptors in the body.The significance of isomers(异构体) extends beyond theoretical chemistry; it plays a vital role in pharmaceuticals. Many drugs are designed as specific isomers(异构体) because one form may be therapeutically active while another could be inactive or even harmful. A classic example is the drug thalidomide, which was prescribed in the 1950s and 1960s. One isomer(异构体) was effective against morning sickness, while its mirror image caused severe birth defects. This incident underscores the importance of understanding isomers(异构体) in drug development and safety.In addition to their implications in medicine, isomers(异构体) also play a critical role in materials science. Polymers, for instance, can exist as different isomers(异构体) depending on the arrangement of monomers. This can lead to variations in properties such as strength, elasticity, and thermal stability. By manipulating these isomers(异构体), scientists can create materials tailored for specific applications, whether in construction, electronics, or textiles.In conclusion, the study of isomers(异构体) is essential for understanding the intricacies of chemistry and its applications in various fields. From pharmaceuticals to materials science, the unique properties of isomers(异构体) demonstrate the importance of molecular structure in determining the behavior and functionality of compounds. As research continues to advance, the exploration of isomers(异构体) will undoubtedly lead to new discoveries and innovations that can benefit society as a whole.
异构体是化学领域中令人着迷的实体,它们展示了分子结构的复杂性和多样性。基本上,isomers(异构体)是指具有相同分子式但原子排列不同的化合物。这种排列的差异导致了独特的物理和化学性质,使得isomers(异构体)成为化学家和研究人员的重要课题。为了更好地理解isomers(异构体),我们可以将其分为两大类:结构异构体和立体异构体。结构异构体具有相同的分子式,但在原子的连接方式上有所不同。例如,丁醇(C4H10O)有几种结构异构体,包括正丁醇和异丁醇。这些化合物各具独特的特性和应用,突显了分子结构在决定物质行为中的重要性。另一方面,立体异构体则是指原子连接的方式相同,但在空间排列上有所不同。这可以进一步分为几何异构体和光学异构体。几何异构体由于某个键的旋转受到限制而产生,例如在顺-反异构中,取代基的相对位置不同。光学异构体或对映体则特别有趣,因为它们是彼此不可叠加的镜像。这些isomers(异构体)在生物系统中的作用可能截然不同,例如它们与体内酶或受体的相互作用。isomers(异构体)的重要性不仅限于理论化学;它在制药行业也发挥着至关重要的作用。许多药物被设计为特定的isomers(异构体),因为一种形式可能具有治疗活性,而另一种形式则可能无效甚至有害。一个经典的例子是沙利度胺,这种药物在20世纪50年代和60年代被开处方。一个isomer(异构体)有效治疗晨吐,而其镜像则导致严重的出生缺陷。这一事件强调了在药物开发和安全性中理解isomers(异构体)的重要性。除了在医学上的影响,isomers(异构体)在材料科学中也发挥着关键作用。例如,聚合物可以根据单体的排列存在不同的isomers(异构体),这可能导致强度、弹性和热稳定性等性质的变化。通过操控这些isomers(异构体),科学家能够创造出针对特定应用量身定制的材料,无论是在建筑、电子还是纺织品方面。总之,研究isomers(异构体)对于理解化学及其在各个领域的应用至关重要。从制药到材料科学,isomers(异构体)独特的性质展示了分子结构在决定化合物行为和功能中的重要性。随着研究的不断推进,对isomers(异构体)的探索无疑将带来新的发现和创新,从而造福整个社会。