biomaterial
简明释义
英[ˌbaɪəʊməˈtɪərɪəl]美[ˌbaɪoməˈtɪriəl]
n. [材] 生物材料
英英释义
单词用法
合成生物材料 | |
天然生物材料 | |
生物材料特性 | |
生物材料应用 | |
生物材料相容性 | |
用于组织工程的生物材料 | |
医疗设备中的生物材料 | |
来源于...的生物材料 | |
生物材料研发 | |
生物材料降解 |
同义词
反义词
合成材料 | Synthetic materials are often used in manufacturing due to their durability. | 合成材料因其耐用性而常用于制造业。 | |
无机材料 | Inorganic materials like metals and ceramics are essential in construction. | 像金属和陶瓷这样的无机材料在建筑中至关重要。 |
例句
1.As a kind of promising natural biomaterial, the research and application of chitosan in the field of biology and medicine arouse more and more emphasis.
壳聚糖是一种极具发展潜力的天然生物材料,其在生物医学领域的研究和应用越来越受到重视。
2.Conclusion The physicochemical properties of the biomaterial dressing meet the criteria of dressing.
结论该载药材料符合敷料材料的理化性能要求。
3.Objective. To validate a large animal model for spine fusion and biomaterial research.
目的:大型动物模型在脊椎融合和生物材料研究的可行性研究。
4.The modification on the biomaterial surface is the common method to improve the compatibility.
对生物材料表面加以修饰是改善其相容性的常用方法。
5.At present, there are many biomaterial for stent manufacture, the performance of the metal stent is more stable, it can provide the better support intensity.
目前已经有很多符合人体要求的生物材料可用于血管支架的制作,金属支架性能稳定,可以提供更好的支撑强度。
6.Conclusion The biomaterial can be used to repair the injured nerve in the experiment.
结论该材料可用作神经损伤后修复的基础及临床研究的组织工程桥接物。
7.Application of DLC films deposited by liquid-deposition is now limited to electronics and has not begun as biomaterial.
而且液相法dlc膜的应用研究仅限于电子学等方面,在生物材料方面的应用研究尚未开始。
8.Polyanhydrides are one kind of biomaterial with characteristics of surface degradation and good biocompatibility.
聚酸酐是一类具有表面降解特性的生物医用高分子材料,具有良好生物相容性。
9.Porous magnesium has obvious advantages as bone tissue engineering biomaterial.
多孔镁作为骨组织工程材料具有明显的优势。
10.The development of synthetic biomaterial 生物材料 has opened new avenues for regenerative medicine.
合成生物材料 biomaterial的发展为再生医学开辟了新的途径。
11.Natural biomaterial 生物材料 such as collagen are commonly used in cosmetic surgery.
天然的生物材料 biomaterial如胶原蛋白通常用于美容手术。
12.Scientists are exploring the properties of various biomaterial 生物材料 to enhance compatibility with human tissues.
科学家们正在探索各种生物材料 biomaterial的特性,以增强其与人体组织的相容性。
13.The use of biomaterial 生物材料 in medical devices can significantly improve patient outcomes.
在医疗设备中使用生物材料 biomaterial可以显著改善患者的治疗效果。
14.Researchers are developing new types of biomaterial 生物材料 for tissue engineering applications.
研究人员正在开发新型的生物材料 biomaterial,用于组织工程应用。
作文
In recent years, the field of medicine has seen remarkable advancements, particularly in the development of new technologies and materials that can significantly improve patient care. One such innovation is the use of biomaterials, which are natural or synthetic substances designed to interact with biological systems for medical purposes. The importance of biomaterials in modern medicine cannot be overstated, as they play a crucial role in various applications including tissue engineering, drug delivery, and regenerative medicine.To understand the significance of biomaterials, it is essential to explore their diverse applications. In tissue engineering, for instance, biomaterials serve as scaffolds that support the growth and regeneration of tissues. These scaffolds provide a three-dimensional structure that mimics the extracellular matrix, allowing cells to adhere, proliferate, and differentiate. By using biomaterials that are biocompatible and biodegradable, researchers can create environments conducive to tissue regeneration, ultimately leading to improved healing outcomes for patients.Another critical application of biomaterials is in drug delivery systems. Traditional methods of drug administration often face challenges such as poor bioavailability and side effects. However, by utilizing biomaterials, scientists can develop targeted delivery systems that release therapeutic agents in a controlled manner. For example, nanoparticles made from biomaterials can be engineered to deliver drugs directly to diseased cells, minimizing the impact on healthy tissues and enhancing treatment efficacy. This innovative approach not only improves patient outcomes but also reduces the overall cost of healthcare.Moreover, biomaterials are vital in regenerative medicine, where they facilitate the repair and replacement of damaged tissues and organs. For instance, in cases of severe burns or traumatic injuries, biomaterials can be used to create skin substitutes that promote healing and reduce scarring. Similarly, in orthopedic applications, biomaterials such as ceramics and polymers are employed to create implants that integrate seamlessly with bone tissue, providing stability and support.The development of biomaterials is a multidisciplinary endeavor that involves collaboration among chemists, biologists, engineers, and medical professionals. Researchers continuously strive to enhance the properties of biomaterials, focusing on aspects such as mechanical strength, biocompatibility, and degradation rates. For example, advances in nanotechnology have led to the creation of novel biomaterials with improved functionality, opening new avenues for medical applications.Despite the promising potential of biomaterials, challenges remain in their widespread adoption. Issues such as regulatory hurdles, manufacturing scalability, and long-term safety must be addressed to ensure that these materials can be safely and effectively used in clinical settings. Nevertheless, ongoing research and innovation in the field of biomaterials hold great promise for the future of medicine.In conclusion, biomaterials represent a groundbreaking advancement in medical science, offering solutions to some of the most pressing challenges in patient care. Their versatility and ability to interact with biological systems make them invaluable in tissue engineering, drug delivery, and regenerative medicine. As research continues to evolve, the potential applications of biomaterials are boundless, paving the way for improved treatments and enhanced quality of life for patients around the world.
近年来,医学领域见证了显著的进步,尤其是在新技术和材料的发展方面,这些技术和材料能显著改善患者护理。其中一种创新是使用生物材料,这些是设计用于与生物系统相互作用以实现医疗目的的天然或合成物质。生物材料在现代医学中的重要性不容小觑,因为它们在组织工程、药物输送和再生医学等各种应用中发挥着关键作用。要理解生物材料的重要性,必须探讨它们的多种应用。例如,在组织工程中,生物材料作为支架,支持组织的生长和再生。这些支架提供了一个三维结构,模拟细胞外基质,使细胞能够附着、增殖和分化。通过使用生物相容性和生物降解性的生物材料,研究人员可以创造出有利于组织再生的环境,从而最终改善患者的愈合结果。生物材料的另一个重要应用是在药物输送系统中。传统的药物给药方法常常面临诸如生物利用度差和副作用等挑战。然而,通过利用生物材料,科学家可以开发出靶向输送系统,以受控方式释放治疗剂。例如,由生物材料制成的纳米颗粒可以被设计为直接将药物输送到病变细胞,从而最小化对健康组织的影响,并增强治疗效果。这种创新的方法不仅改善了患者的结果,还降低了整体医疗成本。此外,生物材料在再生医学中至关重要,它们促进了受损组织和器官的修复和替代。例如,在严重烧伤或创伤性损伤的情况下,生物材料可以用来创建促进愈合并减少瘢痕的皮肤替代品。同样,在骨科应用中,像陶瓷和聚合物这样的生物材料被用来创建与骨组织无缝结合的植入物,提供稳定性和支持。生物材料的开发是一个多学科的努力,涉及化学家、生物学家、工程师和医疗专业人员之间的合作。研究人员不断努力增强生物材料的特性,关注机械强度、生物相容性和降解速率等方面。例如,纳米技术的进步导致新型生物材料的创建,其功能得到改善,为医疗应用开辟了新的途径。尽管生物材料的潜在前景令人鼓舞,但在其广泛应用中仍然存在挑战。诸如监管障碍、制造规模化和长期安全性等问题必须得到解决,以确保这些材料能够在临床环境中安全有效地使用。尽管如此,生物材料领域的持续研究和创新为医学的未来带来了巨大希望。总之,生物材料代表了医学科学的一项突破性进展,为解决一些最紧迫的患者护理挑战提供了解决方案。它们的多功能性和与生物系统相互作用的能力使它们在组织工程、药物输送和再生医学中不可或缺。随着研究的不断发展,生物材料的潜在应用是无穷无尽的,为全球患者提供了改善治疗和提高生活质量的途径。