biomechanical
简明释义
英[/ˌbaɪoʊmɪˈkænɪkəl/]美[/ˌbaɪoʊmɪˈkænɪkəl/]
生物力学
英英释义
Relating to the study of the mechanical laws concerning the movement or structure of living organisms. | 与研究生物有机体的运动或结构相关的机械法则有关。 |
单词用法
同义词
反义词
心理的 | Psychological factors play a significant role in sports performance. | 心理因素在运动表现中起着重要作用。 | |
抽象的 | The abstract concept of motion can be difficult to grasp without practical examples. | 没有实际例子,运动的抽象概念可能难以理解。 |
例句
1.Objective: to establish a more accurate and physiological biomechanical model of the muscles related to the hip joint.
目的:建立精确、接近生理的髋关节周围肌肉三维生物力学模型。
2.Pullout strength and biomechanical stability differences were compared statistically.
拔出强度及生物力学稳定性进行统计学分析。
3.Even more interesting is that mammals didn't reach some "upper biomechanical limit" to their body sizes - they could have grown much larger.
更有趣的是,他们的体型并没有达到生物力学的上限-他们还可以长的更大。
4.Study Design. Dynamic triaxial biomechanical testing of immature and mature ovine spine motion segments.
研究设计:动态三维生物力学方法测试幼年和成年羊的脊柱运动节段。
5.Money's team used high-speed video analysis to study spores thrown into the air by a biomechanical process as elegant as it is miniscule.
曼尼的团队利用高速摄像分析的方法对孢子投掷到空气中的生物力学过程进行了研究。这一过程如同草写的小字般优雅简洁。
6.Study Design. A biomechanical study using ex vivo bovine spinal cord and dura, and a synthetic surrogate spinal cord with bovine dura.
研究设计:利用体外牛脊髓和硬脑膜以及牛硬脑膜合成替代脊髓的生物力学研究。
7.Objective To discuss the method of constructing biomechanical model of rabbit femur.
目的研究兔股骨三维生物力学模型的建立方法。
8.However, there is little biomechanical evidence to support such claims, particularly after traumatic lumbar burst fracture.
然而,很少有生物力学方面的证据支持这观点,非凡是创伤性腰椎爆裂骨折。
9.The treatment of TL burst fractures is based on two primary principles, neurological optimization and biomechanical stability.
胸腰椎爆裂性骨折的治疗主要基于两个原则,神经“最优化”和生物力学稳定性。
10.The study of biomechanical 生物力学的 properties helps improve athletic performance.
对生物力学的性质的研究有助于提高运动表现。
11.Injuries can often be analyzed through biomechanical 生物力学的 assessments.
伤害通常可以通过生物力学的评估进行分析。
12.The biomechanical 生物力学的 analysis of gait can help diagnose certain conditions.
步态的生物力学的分析可以帮助诊断某些疾病。
13.Engineers use biomechanical 生物力学的 principles to design better prosthetics.
工程师利用生物力学的原理设计更好的假肢。
14.Researchers are developing biomechanical 生物力学的 models to simulate human movement.
研究人员正在开发生物力学的模型来模拟人类运动。
作文
The field of medicine has seen tremendous advancements over the last few decades, particularly in areas that combine technology with human physiology. One such area is the study of biomechanical systems, which focuses on the mechanical aspects of biological organisms. This interdisciplinary field merges principles from biology, engineering, and physics to understand how living beings move and interact with their environment. In essence, biomechanical refers to the study of the structure and function of biological systems by means of the methods of mechanics. Understanding the biomechanical properties of the human body is crucial for various applications, including rehabilitation, sports science, and ergonomics. For instance, when a physical therapist designs a rehabilitation program for a patient recovering from an injury, they must consider the biomechanical aspects of the patient's movements. By analyzing how forces act on the body during different activities, therapists can create tailored exercises that promote healing while minimizing the risk of re-injury. In sports science, coaches and trainers utilize biomechanical analyses to enhance athletic performance. By studying the mechanics of a runner's stride or a swimmer's stroke, they can identify inefficiencies and suggest modifications that lead to improved speed and endurance. This application of biomechanical principles not only helps athletes achieve their personal bests but also reduces the likelihood of injuries associated with improper technique. Moreover, ergonomics, the science of designing the workplace and products to fit the user, heavily relies on biomechanical research. For example, when designing office chairs, manufacturers must consider the biomechanical interactions between the human body and the chair. A well-designed chair can support proper posture, reduce strain on the back, and enhance productivity. Conversely, poor design can lead to discomfort and long-term health issues. Advancements in technology have further propelled the field of biomechanical research. With the introduction of motion capture systems and computer simulations, researchers can now analyze human movement with unprecedented accuracy. These technologies allow for real-time feedback and detailed assessments, enabling a deeper understanding of biomechanical processes. For instance, in the development of prosthetic limbs, engineers apply biomechanical principles to create devices that mimic natural movement, allowing amputees to regain mobility and improve their quality of life. In conclusion, the study of biomechanical systems is essential for improving health outcomes, enhancing athletic performance, and designing user-friendly products. As we continue to explore the intricate relationship between biology and mechanics, we will undoubtedly uncover new insights that can lead to innovative solutions in medicine, sports, and ergonomics. The future of biomechanical research holds great promise, and its impact on our lives will only grow as technology advances and our understanding of human physiology deepens.
医学领域在过去几十年里取得了巨大的进步,特别是在将技术与人体生理学结合的领域。其中一个领域是对生物力学系统的研究,它集中于生物有机体的机械方面。这个跨学科的领域融合了生物学、工程学和物理学的原理,以理解生物体如何移动以及如何与环境互动。实际上,生物力学是指通过力学的方法研究生物系统的结构和功能。理解人体的生物力学特性对于各种应用至关重要,包括康复、运动科学和人机工程学。例如,当物理治疗师为一位正在恢复中的患者设计康复方案时,他们必须考虑患者运动的生物力学方面。通过分析不同活动中作用于身体的力量,治疗师可以创建量身定制的锻炼,促进康复,同时最小化再受伤的风险。在运动科学中,教练和训练师利用生物力学分析来提高运动表现。通过研究跑步者的步幅或游泳者的划水动作的力学,他们可以识别出低效之处,并建议改进措施,从而提高速度和耐力。这种生物力学原理的应用不仅帮助运动员达到个人最佳成绩,还减少了因技巧不当而导致的伤害的可能性。此外,人机工程学,即设计适合用户的工作场所和产品的科学,严重依赖于生物力学研究。例如,在设计办公椅时,制造商必须考虑人体与椅子之间的生物力学相互作用。设计良好的椅子可以支持正确的姿势,减少背部压力,从而提高生产力。相反,设计不良可能导致不适和长期健康问题。随着技术的进步,生物力学研究领域也得到了进一步推动。随着运动捕捉系统和计算机模拟的引入,研究人员现在可以以前所未有的精度分析人类运动。这些技术允许实时反馈和详细评估,使我们对生物力学过程有更深入的理解。例如,在假肢的开发中,工程师应用生物力学原理来创造模仿自然运动的设备,使截肢者能够恢复行动能力,提高生活质量。总之,研究生物力学系统对于改善健康结果、增强运动表现和设计用户友好的产品至关重要。随着我们继续探索生物学与力学之间复杂的关系,我们无疑会发现新的见解,这些见解可以在医学、体育和人机工程学中带来创新解决方案。生物力学研究的未来充满希望,其对我们生活的影响将随着技术的进步和我们对人体生理学的理解加深而不断增长。