chemisorption
简明释义
英[ˌkemɪˈsɔːpʃən]美[kemɪˈzɔrpʃən]
n. [化学] 化学吸收作用
英英释义
单词用法
气体的化学吸附 | |
化学吸附能 | |
化学吸附等温线 | |
化学吸附动力学 | |
强化学吸附 | |
弱化学吸附 | |
物理吸附与化学吸附 | |
催化剂的化学吸附 |
同义词
反义词
例句
1.The chemisorption of H_2 and H_2O, and their reactivity with CO on a Ni catalyst were investigated using pulse reactor.
本文应用脉冲色谱法,对镍基催化剂上H_2和H_2O的不可逆吸附,以及CO和它们的反应情况进行了研究。
2.The height of the reactor ensures a suitable particle retention time for the wetting of hydrated lime particles and the chemisorption of SO2/SO3 with the lime.
反应器的高度确保了颗粒合适的停留时间来打湿熟石灰的颗粒以及石灰对于SO2/SO3的化学吸附。
3.The catalyst is characterized by temperature programmed reduction (TPR), H_2 chemisorption and ammonia temperature programmed desorption (NH3-TPD).
采用程序升温还原(TPR)、氢的化学吸附和NH_3的程序升温脱附(NH3 - TPD)对催化剂进行了表征。
4.XRD, CO chemisorption, TPR, HRTEM, and XPS techniques were used to characterize the structures of metal phosphides, which provide some insights into the enhanced HDS activities.
采用XRD、CO化学吸附、TPR、HRTEM、XPS等表征技术对制备的催化剂的结构进行了表征,并对得到的催化剂反应性能结果进行了原理的探讨。
5.The theoretic mechanism on heavy metal ions partitioning problem, such as: Two Step Model, Multiple Surface Sites Model, Surface Film Model and Chemisorption Model etc.
讨论了两阶段理论模型,多重表面座模型, 表面薄膜模型和化学吸附层模型的应用;
6.The chemisorption of aromatic molecules on transition metal is of great interest due to extensive use in petrol-chemistry industry and environment protection.
由于在石油化工和环境保护方面的广泛应用,芳香分子在过渡金属表面的吸附成为人们研究的热点。
7.During chemisorption, the energy released is often significant, indicating strong interactions.
在化学吸附过程中,释放的能量通常是显著的,表明存在强相互作用。
8.The study of chemisorption can help improve the efficiency of gas sensors.
对化学吸附的研究可以帮助提高气体传感器的效率。
9.Surface scientists often use techniques to measure chemisorption rates on various materials.
表面科学家经常使用技术来测量各种材料上的化学吸附速率。
10.In catalysis, chemisorption plays a critical role in the activation of reactants.
在催化中,化学吸附在反应物的活化中起着关键作用。
11.The process of chemisorption involves the formation of strong chemical bonds between the adsorbate and the surface.
这个化学吸附过程涉及到吸附物与表面之间形成强的化学键。
作文
In the realm of surface chemistry, the phenomenon of chemisorption plays a pivotal role in understanding how molecules interact with solid surfaces. Chemisorption, or 化学吸附, refers to the process where a gas or liquid molecule forms a strong chemical bond with a solid surface. This interaction is fundamentally different from physisorption, which involves weaker van der Waals forces. The strength and nature of the bonds formed during chemisorption are crucial for various applications, including catalysis, sensor technology, and material science.To illustrate the importance of chemisorption, let us consider its role in catalysis. Catalysts are substances that accelerate a chemical reaction without being consumed in the process. Many catalytic reactions occur on the surface of solid catalysts, where reactant molecules must first be adsorbed. The efficiency of these reactions often hinges on the ability of the reactants to undergo chemisorption. For instance, in the Haber process, which synthesizes ammonia from nitrogen and hydrogen, the reactant gases must chemisorb onto the surface of the iron catalyst. The strong bonds formed during chemisorption facilitate the breaking of molecular bonds and the formation of new ones, ultimately leading to the desired product.Moreover, chemisorption is not only significant in catalysis but also in the development of sensors. Gas sensors often rely on the chemisorption of target gas molecules onto the sensor's surface. The interaction alters the electronic properties of the sensor material, allowing for the detection of specific gases at low concentrations. For example, metal oxide semiconductors utilize chemisorption to detect toxic gases, such as carbon monoxide or nitrogen dioxide, by measuring changes in resistance or conductivity.In material science, chemisorption is essential in the fabrication of thin films and nanostructures. The controlled deposition of materials often depends on the chemisorption of precursor molecules on a substrate. By manipulating the conditions under which chemisorption occurs, researchers can create materials with specific properties and functions. This is particularly relevant in the field of electronics, where the performance of devices can be enhanced through precise control of surface interactions.However, it is important to note that chemisorption is a complex process influenced by several factors, including surface chemistry, temperature, and pressure. The nature of the solid surface can significantly affect the strength and type of bonds formed during chemisorption. For instance, metal surfaces may exhibit different adsorption characteristics compared to oxide surfaces due to differences in electronic structure and reactivity. Understanding these nuances is vital for optimizing processes in both industrial and laboratory settings.In conclusion, chemisorption is a fundamental concept in surface chemistry that has far-reaching implications across various scientific fields. From catalysis and sensor technology to material science, the ability of molecules to form strong chemical bonds with surfaces is critical for advancing technology and improving efficiency. As research continues to uncover the intricacies of chemisorption, we can expect to see new innovations and applications emerge, further highlighting the significance of this fascinating phenomenon.
在表面化学领域,chemisorption(化学吸附)现象在理解分子如何与固体表面相互作用方面发挥着关键作用。Chemisorption指的是气体或液体分子与固体表面形成强化学键的过程。这种相互作用与物理吸附(physisorption)截然不同,后者涉及较弱的范德华力。在chemisorption过程中形成的键的强度和性质对于催化、传感器技术和材料科学等各种应用至关重要。为了说明chemisorption的重要性,让我们考虑其在催化中的作用。催化剂是加速化学反应而不被消耗的物质。许多催化反应发生在固体催化剂的表面,反应物分子必须首先被吸附。这些反应的效率往往取决于反应物是否能够经历chemisorption。例如,在合成氨的哈伯过程(Haber process)中,反应气体必须在铁催化剂的表面上化学吸附。期间形成的强键促进了分子键的断裂和新键的形成,最终导致所需产品的生成。此外,chemisorption不仅在催化中重要,也在传感器的发展中扮演着关键角色。气体传感器通常依赖于目标气体分子在传感器表面的chemisorption。这种相互作用改变了传感器材料的电子特性,从而允许以低浓度检测特定气体。例如,金属氧化物半导体利用chemisorption来检测一氧化碳或二氧化氮等有毒气体,通过测量电阻或导电性的变化。在材料科学中,chemisorption在薄膜和纳米结构的制造中至关重要。材料的控制沉积往往依赖于前驱体分子在基材上的chemisorption。通过操控chemisorption发生的条件,研究人员可以创造具有特定性质和功能的材料。这在电子学领域尤为相关,设备的性能可以通过精确控制表面相互作用来提高。然而,需要注意的是,chemisorption是一个复杂的过程,受多个因素的影响,包括表面化学、温度和压力。固体表面的性质会显著影响在chemisorption过程中形成的键的强度和类型。例如,金属表面可能与氧化物表面表现出不同的吸附特性,这是由于电子结构和反应性的差异。理解这些细微差别对于优化工业和实验室环境中的过程至关重要。总之,chemisorption是表面化学中的一个基本概念,对各个科学领域产生深远的影响。从催化和传感器技术到材料科学,分子与表面形成强化学键的能力对推动技术进步和提高效率至关重要。随着研究不断揭示chemisorption的复杂性,我们可以期待新的创新和应用的出现,进一步突出这一迷人现象的重要性。