coacervate
简明释义
n. 凝聚层;[细胞] 团聚体
复 数 c o a c e r v a t e s
第 三 人 称 单 数 c o a c e r v a t e s
现 在 分 词 c o a c e r v a t i n g
过 去 式 c o a c e r v a t e d
过 去 分 词 c o a c e r v a t e d
英英释义
单词用法
聚合相 | |
聚合物形成 | |
在溶液中聚合 | |
聚合微滴 |
同义词
聚集体 | The coacervate forms when the molecules aggregate in solution. | 当分子在溶液中聚集时,形成了聚集体。 | |
簇 | 在生物学中,细胞可以聚集在一起形成组织。 | ||
聚合物 | The conglomerate of particles settled at the bottom of the container. | 颗粒的聚合物沉积在容器底部。 |
反义词
溶解 | 盐会在水中溶解。 | ||
分散 | 如果混合得好,油会在水中分散。 |
例句
1.The coacervate particle of carbon black consists of lied graphite layers.
炭黑原生粒子是由同心石墨层排列组成。
2.By time series analysis, we build models depicting the cutting tool states, coacervate information from dynamic date and construct feature vectors for discrimination.
通过时间序列分析建立反映切削状态的数学模型,从动态数据中凝聚信息,构成用于判别的特征向量。
3.By time series analysis, we build models depicting the cutting tool states, coacervate information from dynamic date and construct feature vectors for discrimination.
通过时间序列分析建立反映切削状态的数学模型,从动态数据中凝聚信息,构成用于判别的特征向量。
4.The method involves forming a coacervate of the biologically-active material and chitosan and then dehydrating mixture of coacervate and trehalose solution.
该方法包括:将该生物活性材料和脱乙酰壳多糖形成团聚体,然后对团聚体和海藻糖溶液的混合物进行脱水。
5.The process of protein molecules coacervating 聚合 can lead to the formation of biomolecular condensates.
蛋白质分子聚合的过程可以导致生物分子凝聚体的形成。
6.In the laboratory, scientists observed how droplets would coacervate 聚集 to form larger structures.
在实验室中,科学家观察到液滴如何聚集形成更大的结构。
7.Researchers are studying how coacervates 聚合体 can be used in drug delivery systems.
研究人员正在研究如何将聚合体用于药物递送系统。
8.In nature, certain organic compounds coacervate 聚集 to create microenvironments that support life.
在自然界中,某些有机化合物聚集以创造支持生命的微环境。
9.The phenomenon of coacervation 相分离 is important in understanding cellular processes.
理解细胞过程中的相分离现象是非常重要的。
作文
In the realm of science, particularly in biochemistry and molecular biology, the term coacervate refers to a type of colloidal droplet formed when certain macromolecules, such as proteins or nucleic acids, aggregate in a solution. This phenomenon is not just a trivial occurrence; it has significant implications for understanding the origins of life and the behavior of biological systems. The study of coacervates can provide insights into how complex cellular structures may have originated from simple organic compounds in the primordial environment of Earth. To comprehend the importance of coacervates, we must first explore their formation process. When two or more types of macromolecules are mixed in a solution, they can undergo a phase separation, leading to the formation of coacervates. This process is driven by various intermolecular forces, including hydrogen bonding, hydrophobic interactions, and electrostatic forces. The resultant droplets can encapsulate other molecules, such as enzymes or genetic material, creating microenvironments that mimic cellular compartments. This encapsulation ability of coacervates is particularly fascinating because it suggests a mechanism through which early forms of life could have compartmentalized biochemical reactions. In a hypothetical prebiotic world, these droplets could have provided a protected environment for essential biochemical processes, facilitating the emergence of self-replicating systems. Thus, studying coacervates allows scientists to speculate about the conditions under which life might have originated on Earth and potentially on other planets. Moreover, coacervates are not only relevant to the origins of life but also play a crucial role in contemporary biological systems. For example, they are involved in the formation of biomolecular condensates, which are dynamic structures within cells that concentrate specific proteins and RNA molecules. These condensates are vital for various cellular processes, including signal transduction, gene expression, and stress responses. By understanding how coacervates function within cells, researchers can gain insights into the underlying mechanisms of diseases, such as neurodegenerative disorders, where protein aggregation plays a key role. Furthermore, the concept of coacervates extends beyond biology into materials science and nanotechnology. Scientists are exploring the use of coacervates to create new materials with unique properties. For instance, they can be engineered to form drug delivery systems that release therapeutic agents in a controlled manner. By manipulating the composition and conditions of the coacervate formation, researchers can design systems that respond to specific stimuli, enhancing the efficacy of treatments. In conclusion, the term coacervate encompasses a wide range of phenomena that bridge the gap between the origins of life and modern biological and technological applications. Understanding coacervates not only sheds light on fundamental questions about life's beginnings but also opens up new avenues for innovation in medicine and materials science. As research continues to unfold, the significance of coacervates in both historical and contemporary contexts will undoubtedly expand, making it a pivotal concept in the scientific community.
在科学领域,特别是在生物化学和分子生物学中,术语coacervate指的是一种胶体液滴,当某些大分子(如蛋白质或核酸)在溶液中聚集时形成。这种现象并不是一个微不足道的事件;它对理解生命的起源和生物系统的行为具有重要意义。研究coacervates可以提供有关复杂细胞结构如何从简单有机化合物在地球的原始环境中起源的见解。要理解coacervates的重要性,我们必须首先探讨它们的形成过程。当两种或多种类型的大分子混合在溶液中时,它们可能会经历相分离,导致coacervates的形成。这个过程是由各种分子间力驱动的,包括氢键、疏水相互作用和静电力。结果液滴可以包裹其他分子,例如酶或遗传物质,创造出模拟细胞区室的微环境。这种包裹能力尤其引人入胜,因为它暗示了早期生命形式如何能够将生化反应进行区隔的机制。在假设的前生物世界中,这些液滴可能为基本的生化过程提供了受保护的环境,促进了自我复制系统的出现。因此,研究coacervates使科学家能够推测生命可能在地球上以及其他行星上起源的条件。此外,coacervates不仅与生命的起源相关,而且在当代生物系统中也发挥着关键作用。例如,它们参与生物分子凝聚体的形成,这些凝聚体是细胞内的动态结构,浓缩特定的蛋白质和RNA分子。这些凝聚体对于各种细胞过程至关重要,包括信号转导、基因表达和应激反应。通过理解coacervates在细胞中的功能,研究人员可以深入了解疾病的潜在机制,例如神经退行性疾病,其中蛋白质聚集发挥着关键作用。此外,coacervates的概念不仅限于生物学,还扩展到材料科学和纳米技术。科学家们正在探索利用coacervates创建具有独特性质的新材料。例如,它们可以被设计成药物递送系统,以控制方式释放治疗剂。通过操控coacervate形成的组成和条件,研究人员可以设计出对特定刺激作出反应的系统,从而增强治疗效果。总之,术语coacervate涵盖了一系列现象,跨越了生命的起源和现代生物及技术应用之间的鸿沟。理解coacervates不仅阐明了关于生命起源的基本问题,而且为医学和材料科学的创新开辟了新的途径。随着研究的不断展开,coacervates在历史和当代背景下的重要性无疑将扩大,使其成为科学界的一个关键概念。