microcrystal

简明释义

[ˌmaɪkrəʊˈkrɪstəl][ˈmaɪkrəˌkrɪstl;ˌmaɪkroʊˈkrɪs

n. 微晶

英英释义

A microcrystal is a small crystal, typically in the range of micrometers in size, that can be used in various scientific and industrial applications.

微晶是一种小晶体,通常尺寸在微米范围内,可用于各种科学和工业应用。

单词用法

microcrystal structure

微晶结构

microcrystal growth

微晶生长

microcrystal analysis

微晶分析

microcrystal formation

微晶形成

synthesize microcrystals

合成微晶

characterize microcrystals

表征微晶

observe microcrystals

观察微晶

measure microcrystals

测量微晶

同义词

nanocrystal

纳米晶体

Nanocrystals are often used in the field of nanotechnology.

纳米晶体通常用于纳米技术领域。

microscale crystal

微观尺度晶体

Microscale crystals can be found in various materials and applications.

微观尺度晶体可以在各种材料和应用中找到。

micro-sized crystal

微型晶体

Micro-sized crystals are essential for the production of high-quality optical devices.

微型晶体对于高质量光学设备的生产至关重要。

反义词

macrocrystal

大晶体

Macrocrystals are often used in the manufacturing of high-quality gemstones.

大晶体常用于制造高品质的宝石。

amorphous

非晶态

The amorphous state of a material can affect its optical properties.

材料的非晶态可以影响其光学特性。

例句

1.A concrete curing agent of emulsion wax was obtained with the combination of paraffin wax, microcrystal wax and liquid wax.

研制了一种以石蜡、微晶蜡和液蜡复配为成膜物质并经乳化而成的混凝土养护剂。

2.The exhausts mechanism of the glass structure was proved by applying classic theory, semi-classic theory and the quantum theory, the microcrystal model of the glass was set up.

运用经典理论、半经典理论和量子理论证明了玻璃的结构损耗机理,建立了玻璃的“晶子”模型。

3.Experiments show that microcrystal wax with a carbon distribution less than C72 can be analyzed with large diameter quartz capillary column.

实验表明,使用大口径高温毛细管柱可以分析碳数在72以下的微晶蜡。

4.Taking an iron mine as example, the burden principles and methods for making the microcrystal glass from tailings and waste rock are described.

以某铁矿为例,阐述了利用尾矿废石制作微晶玻璃的配料原则和配料方法。

5.This paper introduced the relationship of microcrystal structure of coke and its macroscopical properties, and the effects of coal rank and pyrogenation process on microcrystal structure etc.

介绍了焦炭微晶结构与其宏观性质的关联,煤化度及热解过程对微晶结构的影响等,并说明了研究焦炭结构的意义及其发展前景。

6.The results show that the release of H and O atom and the burning of part carbon atoms in microcrystal, results in formation of the enrich micropores at the surface of PANACF.

形貌分析结果表明,因H、O原子等逸出及微晶间部分碳原子被烧损,PANACF的表面形成了极丰富的微孔。

7.A method has been developed to measure the carbon distribution and content of microcrystal wax with high drop melting point.

该蜡具有适宜的烃组成和碳数分布,具有较高的熔点,可在较宽的温度范围内保持良好的防护性能。

8.The amylose has the fastest speed both in crystal degree and microcrystal size, the next is that of amylopectin, where native starch has the slowest speed.

直链淀粉和支链淀粉共同存在时会产生较强的相互作用,导致其混合淀粉的结晶速度的下降。

9.The pharmaceutical industry is exploring microcrystal 微晶 formulations for better drug delivery.

制药行业正在探索微晶配方以实现更好的药物递送。

10.The artist used microcrystals 微晶 in her paint to create a shimmering effect.

这位艺术家在她的颜料中使用了微晶以创造出闪烁的效果。

11.In the field of electronics, microcrystals 微晶 are used to enhance the performance of semiconductors.

在电子领域,微晶被用来提高半导体的性能。

12.A microcrystal 微晶 can be observed under a microscope to study its structure.

在显微镜下可以观察到微晶以研究其结构。

13.The researchers discovered a new type of microcrystal 微晶 that has unique optical properties.

研究人员发现了一种具有独特光学特性的新的微晶

作文

Microcrystals are tiny crystalline structures that can be found in various materials, ranging from minerals to biological substances. These minuscule formations often play a crucial role in determining the physical properties of a material. For instance, in pharmaceuticals, the presence of microcrystal(微晶体)forms can significantly influence the solubility and bioavailability of drugs. This is particularly important in drug formulation, where the size and shape of the particles can affect how quickly and effectively a medication works in the body.In the field of materials science, microcrystal(微晶体)structures are studied for their unique properties. These small crystals can exhibit different optical, electrical, and mechanical behaviors compared to their larger counterparts. Researchers have found that manipulating the size and arrangement of microcrystal(微晶体)structures can lead to innovations in technology, such as improved semiconductors and enhanced sensors.Moreover, microcrystal(微晶体)forms are also significant in geology and mineralogy. The formation of microcrystal(微晶体)structures in rocks can provide insights into the geological processes that shaped them. For example, the presence of certain microcrystal(微晶体)minerals can indicate the temperature and pressure conditions under which the rock was formed. This information is valuable for understanding the Earth's history and for exploring natural resources.In biology, microcrystal(微晶体)structures can be found in various organisms. For example, certain types of bones and shells contain microcrystal(微晶体)calcium carbonate, which contributes to their strength and durability. Understanding how these microcrystal(微晶体)structures form and function can lead to advancements in biomaterials and tissue engineering, where scientists aim to create synthetic materials that mimic natural ones.The study of microcrystal(微晶体)structures has implications beyond just scientific research; it also has practical applications in industries such as electronics, pharmaceuticals, and materials manufacturing. For instance, in the electronics industry, the development of microcrystal(微晶体)displays has revolutionized how we interact with technology, leading to thinner, lighter, and more efficient devices.Furthermore, the exploration of microcrystal(微晶体)technologies continues to advance, with ongoing research focused on nanotechnology and its potential to manipulate materials at the atomic level. As scientists delve deeper into the world of microcrystal(微晶体)structures, we can expect to see new materials and applications that could change our everyday lives.In conclusion, microcrystal(微晶体)structures are not merely scientific curiosities; they are integral to a wide array of fields, influencing everything from drug development to technological innovation. As our understanding of these tiny structures grows, so too does our ability to harness their potential for future advancements. The continued exploration of microcrystal(微晶体)technologies promises to unveil new possibilities, making it an exciting area of study for scientists and researchers alike.

微晶体是可以在各种材料中找到的微小晶体结构,范围从矿物到生物物质。这些微小的形成物通常在决定材料的物理特性方面发挥着至关重要的作用。例如,在制药领域,microcrystal(微晶体)的存在可以显著影响药物的溶解度和生物利用度。这在药物配方中尤为重要,因为颗粒的大小和形状会影响药物在体内的作用速度和效果。在材料科学领域,microcrystal(微晶体)结构因其独特的性质而受到研究。这些小晶体与其较大对应物相比,可以表现出不同的光学、电气和机械行为。研究人员发现,通过操纵microcrystal(微晶体)结构的大小和排列,可以在技术上实现创新,例如改善半导体和增强传感器。此外,microcrystal(微晶体)形式在地质学和矿物学中也具有重要意义。岩石中microcrystal(微晶体)结构的形成可以提供有关塑造它们的地质过程的见解。例如,某些类型的microcrystal(微晶体)矿物的存在可以指示岩石形成时的温度和压力条件。这些信息对于理解地球历史和探索自然资源非常有价值。在生物学中,microcrystal(微晶体)结构可以在各种生物体中找到。例如,某些类型的骨骼和外壳含有microcrystal(微晶体)碳酸钙,这有助于它们的强度和耐用性。理解这些microcrystal(微晶体)结构是如何形成和发挥作用的,可以推动生物材料和组织工程的进步,科学家们旨在创造模仿自然材料的合成材料。microcrystal(微晶体)结构的研究不仅仅限于科学研究;它还在电子、制药和材料制造等行业中具有实际应用。例如,在电子行业,microcrystal(微晶体)显示技术的发展彻底改变了我们与技术的互动方式,导致设备更薄、更轻、更高效。此外,microcrystal(微晶体)技术的探索仍在继续,正在进行的研究集中在纳米技术及其操控材料的原子级潜力上。随着科学家们深入探索microcrystal(微晶体)结构,我们可以期待看到新的材料和应用,这可能会改变我们的日常生活。总之,microcrystal(微晶体)结构不仅仅是科学好奇心;它们对广泛的领域至关重要,影响着从药物开发到技术创新的方方面面。随着我们对这些微小结构的理解不断加深,我们利用它们潜力的能力也在不断增强。对microcrystal(微晶体)技术的持续探索承诺揭示新的可能性,使其成为科学家和研究人员都感兴趣的激动人心的研究领域。