bathochromic

简明释义

[ˌbæθəˈkroʊmɪk][ˌbæθəˈkroʊmɪk]

adj. 向红的

英英释义

Referring to a shift in the absorption spectrum of a substance toward longer wavelengths, often observed in chemical compounds when they are excited or undergo certain reactions.

指物质的吸收光谱向更长波长的移动,通常在化合物被激发或经历某些反应时观察到。

单词用法

同义词

redshift

红移

The redshift of the spectral lines indicates a bathochromic effect.

光谱线的红移表明了红移效应。

bathochromic shift

红移位移

A bathochromic shift occurs when a molecule absorbs light at longer wavelengths.

当分子在更长波长处吸收光时,会发生红移位移。

反义词

hypsochromic

蓝移的

The hypsochromic shift indicates a decrease in wavelength.

蓝移的变化表示波长的减少。

redshifted

红移的

In spectroscopy, a redshifted spectrum can indicate the presence of moving away objects.

在光谱学中,红移的光谱可以指示远离的物体的存在。

例句

1.The absorption of doping polyaniline becomes very intense and the absorption peak generates bathochromic shift in ultraviolet visible absorption spectrum.

紫外-可见吸收光谱表明,掺杂态聚苯胺的吸收峰变宽而且发生红移。

2.The absorption of doping polyaniline becomes very intense and the absorption peak generates bathochromic shift in ultraviolet visible absorption spectrum.

紫外-可见吸收光谱表明,掺杂态聚苯胺的吸收峰变宽而且发生红移。

3.The absorption of doping polyaniline becomes very intense and the absorption peak generates bathochromic shift.

掺杂聚苯胺的吸收变得非常强烈,吸收峰产生红移。

4.The compound displayed a bathochromic shift in its absorption spectrum, indicating a lower energy transition.

该化合物在其吸收光谱中显示出红移,表明能量转变降低。

5.The bathochromic shift is often used to study the electronic properties of organic compounds.

通常使用红移来研究有机化合物的电子特性。

6.Researchers observed a significant bathochromic effect when the dye was mixed with certain solvents.

研究人员发现,当染料与某些溶剂混合时,出现显著的红移效应。

7.The bathochromic shift can be attributed to the increased conjugation of the molecular structure.

这种红移可以归因于分子结构共轭性的增加。

8.In the presence of metal ions, the ligand exhibited a pronounced bathochromic shift.

在金属离子的存在下,该配体表现出明显的红移

作文

Color plays a significant role in our daily lives, influencing our emotions, decisions, and even our health. One fascinating aspect of color science is the phenomenon known as bathochromic shift. This term refers to the change in the absorption spectrum of a substance, where the wavelength of light absorbed shifts to longer wavelengths, or towards the red end of the spectrum. Understanding this concept is crucial for various fields, including chemistry, biology, and materials science.In chemistry, the bathochromic effect is often observed in organic compounds when they are subjected to different environmental conditions. For example, when a dye is dissolved in a solvent, its color may change due to the interactions between the dye molecules and the solvent. This interaction can cause an increase in the wavelength of light that the dye absorbs, resulting in a more vibrant color. This shift is not just a trivial change; it can provide valuable information about the molecular structure and electronic properties of the compound.In biological systems, the bathochromic shift is essential for understanding how certain pigments function in photosynthesis. Chlorophyll, the green pigment in plants, exhibits a bathochromic shift when it absorbs light energy. This shift allows plants to utilize a broader spectrum of sunlight, optimizing their ability to convert light into chemical energy. The efficiency of this process is vital for plant growth and, by extension, for the entire ecosystem, as it forms the basis of the food chain.Materials science also benefits from the study of bathochromic shifts. Researchers are continually looking for ways to develop new materials with enhanced optical properties. By manipulating the molecular structures of certain compounds, scientists can create materials that exhibit specific bathochromic shifts, allowing them to be used in applications such as solar cells, sensors, and LED technology. These advancements could lead to more efficient energy conversion and better-performing devices in the future.The implications of bathochromic shifts extend beyond just scientific curiosity; they have practical applications in various industries. For instance, in the field of art and design, understanding how colors interact can significantly impact the choice of materials and techniques used by artists. A painter might choose a particular pigment based on its bathochromic properties to achieve a desired visual effect. Similarly, fashion designers consider these shifts when selecting fabrics and colors for their collections, ensuring that the final products resonate with consumers.In conclusion, the term bathochromic encompasses a fascinating aspect of color science that has far-reaching implications across multiple disciplines. By studying how substances absorb light and the factors that influence these changes, we can gain deeper insights into the natural world and harness this knowledge for technological advancements. Whether in chemistry, biology, or material science, the bathochromic effect serves as a reminder of the intricate connections between color, light, and life itself. As we continue to explore these relationships, we may uncover even more applications and understandings that enhance our lives and the environment around us.

颜色在我们的日常生活中扮演着重要角色,影响着我们的情感、决策甚至健康。色彩科学中的一个迷人方面是被称为bathochromic位移的现象。这个术语指的是物质吸收光谱的变化,其中所吸收光的波长向较长的波长移动,或者向红色光谱的末端移动。理解这个概念对于化学、生物学和材料科学等多个领域至关重要。在化学中,bathochromic效应通常在有机化合物受到不同环境条件影响时被观察到。例如,当一种染料溶解在溶剂中时,由于染料分子与溶剂之间的相互作用,其颜色可能会发生变化。这种相互作用可以导致染料吸收的光波长增加,从而产生更生动的颜色。这种位移不仅仅是微不足道的变化;它可以提供关于化合物的分子结构和电子特性的宝贵信息。在生物系统中,bathochromic位移对于理解某些色素在光合作用中的功能至关重要。叶绿素是植物中的绿色色素,在吸收光能时表现出bathochromic位移。这种位移使植物能够利用更广泛的阳光光谱,优化它们将光转化为化学能的能力。这个过程的效率对植物的生长至关重要,并且从而对整个生态系统产生影响,因为它构成了食物链的基础。材料科学也受益于对bathochromic位移的研究。研究人员不断寻找开发具有增强光学特性的材料的方法。通过操纵某些化合物的分子结构,科学家可以创造出表现出特定bathochromic位移的材料,使其可以用于太阳能电池、传感器和LED技术等应用。这些进展可能导致未来更高效的能源转换和更高性能的设备。bathochromic位移的影响超越了单纯的科学好奇心;它在各个行业中都有实际应用。例如,在艺术和设计领域,理解颜色如何相互作用可以显著影响艺术家使用的材料和技术选择。一位画家可能会基于某种颜料的bathochromic特性来选择特定的颜料,以实现所需的视觉效果。同样,时尚设计师在选择面料和颜色时也会考虑这些位移,以确保最终产品与消费者产生共鸣。总之,术语bathochromic涵盖了色彩科学的一个迷人方面,具有跨多个学科的深远影响。通过研究物质如何吸收光以及影响这些变化的因素,我们可以深入了解自然世界,并利用这些知识推动技术进步。无论是在化学、生物学还是材料科学中,bathochromic效应都提醒我们颜色、光和生命之间的复杂联系。当我们继续探索这些关系时,我们可能会发现更多的应用和理解,从而增强我们的生活和周围的环境。