ionization

简明释义

[ˌaɪənaɪˈzeɪʃn][ˌaɪənəˈzeɪʃn]

n. [化学] 离子化

英英释义

Ionization is the process by which an atom or a molecule gains or loses electrons, resulting in the formation of ions.

离子化是原子或分子获得或失去电子的过程,从而形成离子。

单词用法

flame ionization

火焰电离

flame ionization detector

火焰离子化检测器;火焰电离检测器

同义词

ionisation

离子化

The process of ionization occurs when an atom gains or loses electrons.

当原子获得或失去电子时,离子化过程发生。

ionization energy

离子化能

Ionization energy is the energy required to remove an electron from an atom.

离子化能是从原子中移除电子所需的能量。

electrolysis

电解

Electrolysis can be used to induce ionization in a solution.

电解可以用于在溶液中引发离子化。

反义词

recombination

复合

The process of recombination occurs when ions come together to form neutral atoms.

复合过程发生在离子结合形成中性原子时。

neutralization

中和

Neutralization is a chemical reaction between an acid and a base, resulting in the formation of water and a salt.

中和是酸和碱之间的化学反应,产生水和盐。

例句

1.Yeah. OK. We're looking for the lowest ionization energy.

对,好,我们再找最低的电离能。

2.Our ionization energy is going to be equal to the incident energy coming in, minus the kinetic energy of the electron.

我们的电离能将等于,入射能量,减去电子的动能。

3.So, thinking about ionization energy, which atom would you put in the middle here?

那么,从电离能的角度考虑,大家会把哪个原子放在中间?

4.So, as we go down a column, we see ionization energy's going to decrease.

总之,当我们沿着列往下走的时候,我们会看到电离能在降低。

5.The ionization energy, of course, is just the negative of the binding energy.

电离能,我们知道也就是,负的结合能。

6.Breathe is a living kitchen appliance that literally ‘breathes in’ air pollutants through ionization.

Breathe是一个活动的厨房装置,它通过电离化真正起到了吸收空气中的污染物质的作用。

7.But, in fact, we can also talk about the ionization energy of different states of the hydrogen atom or of any atom.

但实际上我们也可以讨论氢原子,或者其它任何原子的其它能级的电离能。

8.So let's compare those ionization energies.

那么让我们来比较一下它们的电离能。

9.So, we can now calculate the ionization energy here.

我们可以计算这的电离能。

10.In mass spectrometry, ionization 离子化 is a crucial step for analyzing chemical compounds.

在质谱分析中,离子化是分析化合物的关键步骤。

11.The ionization 离子化 energy of an element determines how easily it can form ions.

一个元素的离子化能量决定了它形成离子的难易程度。

12.Ultraviolet light can cause ionization 离子化 in certain gases, leading to the formation of plasma.

紫外线可以在某些气体中引起离子化,导致等离子体的形成。

13.The ionization 离子化 of water molecules can affect the pH of a solution.

水分子的离子化可以影响溶液的pH值。

14.The process of ionization 离子化 occurs when an atom gains or loses electrons.

当一个原子获得或失去电子时,离子化的过程发生。

作文

Ionization is a fundamental process in chemistry and physics that involves the transformation of atoms or molecules into ions. This process can occur through various means, including the absorption of energy, chemical reactions, or exposure to radiation. When an atom or molecule gains or loses an electron, it becomes charged, resulting in either a positively charged ion (cation) or a negatively charged ion (anion). Understanding ionization (离子化) is crucial for many scientific disciplines, including environmental science, medicine, and materials science.In the field of environmental science, ionization (离子化) plays a significant role in atmospheric chemistry. For instance, when ultraviolet (UV) radiation from the sun interacts with oxygen molecules in the atmosphere, it can lead to the formation of ozone through a series of ionization (离子化) reactions. This process is vital for protecting life on Earth, as ozone absorbs harmful UV radiation. However, human activities that release pollutants can disrupt this natural balance, leading to ozone depletion and increased UV exposure.In medicine, ionization (离子化) is employed in various diagnostic and therapeutic techniques. One notable application is in radiation therapy for cancer treatment. High-energy radiation can cause ionization (离子化) of cancer cells, leading to their destruction. This method relies on the ability of radiation to penetrate tissues and induce ionization (离子化), which damages the DNA of the targeted cells. However, the challenge lies in minimizing the impact on surrounding healthy tissues, making precise targeting essential.Moreover, ionization (离子化) is also critical in the development of various technologies, such as mass spectrometry. This analytical technique utilizes ionization (离子化) to convert chemical substances into ions, allowing scientists to identify and quantify different compounds within a sample. By understanding the ionization (离子化) process, researchers can enhance the sensitivity and accuracy of mass spectrometers, leading to advancements in fields like pharmacology and toxicology.Another interesting aspect of ionization (离子化) is its role in creating plasma, often referred to as the fourth state of matter. Plasma is formed when gases are heated to high temperatures or subjected to strong electromagnetic fields, causing significant ionization (离子化). This state of matter is prevalent in the universe, particularly in stars, where nuclear fusion occurs due to the high-energy environment created by ionization (离子化). Understanding plasma physics has implications for developing fusion energy as a sustainable power source.In conclusion, ionization (离子化) is a vital process with far-reaching implications across multiple scientific fields. Its significance in environmental science, medicine, technology, and astrophysics highlights the interconnectedness of these disciplines. As research continues to evolve, a deeper understanding of ionization (离子化) will undoubtedly lead to new discoveries and innovations that can benefit society as a whole.

离子化是化学和物理学中的一个基本过程,涉及原子或分子转变为离子的过程。这个过程可以通过多种方式发生,包括能量的吸收、化学反应或辐射的暴露。当一个原子或分子获得或失去电子时,它就会带上电荷,从而形成带正电的离子(阳离子)或带负电的离子(阴离子)。理解离子化对于许多科学学科至关重要,包括环境科学、医学和材料科学。在环境科学领域,离子化在大气化学中发挥着重要作用。例如,当来自太阳的紫外线(UV)辐射与大气中的氧分子相互作用时,它可以通过一系列离子化反应导致臭氧的形成。这个过程对于保护地球上的生命至关重要,因为臭氧能够吸收有害的紫外线辐射。然而,人类活动释放的污染物可能会破坏这种自然平衡,导致臭氧耗竭和紫外线暴露增加。在医学中,离子化被应用于各种诊断和治疗技术中。其中一个显著的应用是在癌症治疗的放射治疗中。高能辐射可以导致癌细胞的离子化,从而使其破坏。这种方法依赖于辐射穿透组织并引发离子化,损伤目标细胞的DNA。然而,挑战在于尽量减少对周围健康组织的影响,使精确定位至关重要。此外,离子化在各种技术的发展中也至关重要,例如质谱分析。这种分析技术利用离子化将化学物质转化为离子,使科学家能够识别和定量样品中的不同化合物。通过理解离子化过程,研究人员可以提高质谱仪的灵敏度和准确性,从而推动药理学和毒理学等领域的发展。另一个有趣的方面是离子化在产生等离子体中的作用,通常被称为物质的第四种状态。当气体被加热到高温或暴露于强电磁场时,会导致显著的离子化,从而形成等离子体。这种物质状态在宇宙中普遍存在,特别是在恒星中,核聚变由于高能环境的形成而发生,这种环境是由离子化造成的。理解等离子体物理学对开发可持续能源的聚变能具有重要意义。总之,离子化是一个重要过程,在多个科学领域具有深远的影响。它在环境科学、医学、技术和天体物理学中的重要性突显了这些学科之间的相互联系。随着研究的不断发展,对离子化的更深入理解无疑将导致新的发现和创新,造福整个社会。