bacteriolytic
简明释义
英[/bækˌtɪəraɪˈlɪtɪk/]美[/bækˌtɪəraɪˈlɪtɪk/]
adj. 溶菌的;杀菌的
英英释义
与破坏细菌有关或导致细菌死亡的。 |
单词用法
同义词
反义词
例句
1.Ingredients: allantoin, vegetal bacteriolytic -enzyme, glycolic acid, citric acid.
成份:尿囊素、植物溶菌酶、甘醇酸、柠檬酸。
2.Ingredients: allantoin, vegetal bacteriolytic -enzyme, glycolic acid, citric acid.
成份:尿囊素、植物溶菌酶、甘醇酸、柠檬酸。
3.The research team discovered a new enzyme with bacteriolytic 溶菌性 properties that could help combat antibiotic-resistant bacteria.
研究小组发现了一种具有溶菌性特性的新的酶,可以帮助对抗抗生素耐药细菌。
4.The bacteriolytic 溶菌性 activity of this compound was significantly higher than previous treatments.
该化合物的溶菌性活性显著高于以往的治疗方法。
5.Researchers are exploring bacteriolytic 溶菌性 therapies as a potential alternative to traditional antibiotics.
研究人员正在探索溶菌性疗法作为传统抗生素的潜在替代品。
6.The bacteriolytic 溶菌性 mechanism involves the breakdown of bacterial cell walls.
这种溶菌性机制涉及细菌细胞壁的分解。
7.In the lab, scientists tested a bacteriolytic 溶菌性 agent on various strains of pathogens.
在实验室中,科学家们对多种病原体菌株测试了一种溶菌性剂。
作文
In the realm of microbiology, the term bacteriolytic refers to the ability of certain substances or processes to cause the lysis, or breakdown, of bacteria. This characteristic is crucial in various applications, including medical treatments, environmental management, and industrial processes. Understanding how bacteriolytic agents work can lead to significant advancements in combating bacterial infections and improving public health.Bacterial infections are a major concern in healthcare today, as they can lead to severe complications and even death if not treated effectively. Traditional antibiotics have been the cornerstone of bacterial infection treatment; however, the rise of antibiotic-resistant strains of bacteria has necessitated the exploration of alternative methods. This is where bacteriolytic agents come into play. These agents can be derived from natural sources, such as bacteriophages, which are viruses that specifically target and destroy bacteria. By harnessing the bacteriolytic properties of these phages, researchers are developing new therapies that may bypass the resistance mechanisms of harmful bacteria.Moreover, bacteriolytic enzymes, like lysins, are another exciting area of research. These enzymes can degrade bacterial cell walls, leading to cell lysis and death. They offer a promising avenue for infection control, particularly in cases where conventional antibiotics fail. The specificity of bacteriolytic enzymes means they can target only pathogenic bacteria without harming beneficial microbiota, making them an attractive option for treatment.In addition to medical applications, bacteriolytic processes are also significant in environmental science. For example, in wastewater treatment, the use of bacteriolytic microorganisms can help break down organic pollutants, thereby improving water quality. This bioremediation approach utilizes the natural abilities of certain bacteria to degrade contaminants, providing a sustainable solution to pollution.Industrial applications of bacteriolytic agents are also on the rise. In food preservation, for instance, bacteriolytic substances can be used to inhibit spoilage bacteria, extending the shelf life of products. This not only reduces food waste but also enhances food safety by preventing foodborne illnesses caused by pathogenic bacteria.The study of bacteriolytic mechanisms is still ongoing, with scientists striving to uncover new ways to utilize these agents effectively. By understanding the genetic and biochemical pathways involved in bacterial lysis, researchers can develop more potent and targeted therapies. This knowledge could revolutionize our approach to treating infections and managing bacterial populations in various environments.In conclusion, the concept of bacteriolytic is pivotal in addressing some of the most pressing challenges in medicine, environmental science, and industry. As we continue to explore and harness the power of bacteriolytic agents, we move closer to innovative solutions that can improve health outcomes and promote sustainability. The future of microbiology is bright, with bacteriolytic research at the forefront of this exciting field, promising new strategies to combat bacterial threats and enhance our quality of life.
在微生物学领域,术语bacteriolytic指的是某些物质或过程使细菌裂解或分解的能力。这一特性在医疗治疗、环境管理和工业过程等多个应用中至关重要。理解bacteriolytic剂的工作原理可以带来重大的进展,帮助对抗细菌感染并改善公共健康。细菌感染是当今医疗保健中的一个主要问题,因为如果不有效治疗,可能导致严重并发症甚至死亡。传统的抗生素一直是治疗细菌感染的基石;然而,抗生素耐药菌株的增加使得探索替代方法变得必要。这时,bacteriolytic剂就发挥了作用。这些剂可以来源于自然,例如专门针对和破坏细菌的病毒——噬菌体。通过利用这些噬菌体的bacteriolytic特性,研究人员正在开发新的疗法,可能绕过有害细菌的耐药机制。此外,像溶菌酶这样的bacteriolytic酶也是研究的一个令人兴奋的领域。这些酶能够降解细菌细胞壁,导致细胞裂解和死亡。它们为控制感染提供了一个有前景的途径,特别是在传统抗生素失效的情况下。bacteriolytic酶的特异性意味着它们可以仅针对致病细菌,而不会伤害有益的微生物群,从而使其成为治疗的一个有吸引力的选择。除了医疗应用,bacteriolytic过程在环境科学中也具有重要意义。例如,在废水处理过程中,使用bacteriolytic微生物可以帮助分解有机污染物,从而改善水质。这种生物修复方法利用某些细菌降解污染物的自然能力,提供了一种可持续的污染解决方案。工业应用中,bacteriolytic剂的使用也在上升。例如,在食品保存中,可以使用bacteriolytic物质来抑制腐败细菌,延长产品的保质期。这不仅减少了食品浪费,还通过防止由致病细菌引起的食源性疾病提高了食品安全。对bacteriolytic机制的研究仍在进行中,科学家们努力揭示有效利用这些剂的新方法。通过理解细菌裂解中涉及的遗传和生化途径,研究人员可以开发更强大和针对性的疗法。这一知识可能会彻底改变我们对待感染和管理各种环境中细菌种群的方法。总之,bacteriolytic的概念在应对医学、环境科学和工业中一些最紧迫的挑战方面至关重要。随着我们继续探索和利用bacteriolytic剂的力量,我们离创新解决方案更近一步,这些解决方案可以改善健康结果并促进可持续发展。微生物学的未来充满希望,bacteriolytic研究处于这一激动人心的领域的前沿,为对抗细菌威胁和提升生活质量承诺了新的策略。