plasmon

简明释义

[ˈplæzmɒn][ˈplæzˌmɒn]

n. 胞质基因(组);等离子体振子

英英释义

A plasmon is a quantum of plasma oscillation, which refers to the collective oscillation of free electron gas density in materials, particularly in metals.

等离子体子是等离子体振荡的量子,指的是材料中,特别是在金属中,自由电子气密度的集体振荡。

单词用法

surface plasmon

表面等离子体

bulk plasmon

体相等离子体

localized surface plasmon

局部表面等离子体

excitation of plasmons

等离子体的激发

plasmonic resonance

等离子共振

coupling of plasmons

等离子体的耦合

同义词

surface plasmon

表面等离子体

Surface plasmons can be excited by incident light in metal-dielectric interfaces.

表面等离子体可以通过入射光在金属-介电界面上被激发。

bulk plasmon

体积等离子体

Bulk plasmons are associated with the collective oscillations of electrons in a material.

体积等离子体与材料中电子的集体振荡有关。

反义词

phonon

声子

Phonons are quantized modes of vibrations occurring in a rigid crystal lattice.

声子是发生在刚性晶格中的量子化振动模式。

vacuum

真空

In a vacuum, there are no particles present to interact with plasmons.

在真空中,没有粒子存在与等离子体子相互作用。

例句

1.The origin of these phenomena have been analyzed in terms of the two plasmon decay theory and dynamic self-focusing model.

使用双等离振子衰变理论,结合动态自聚细丝模型分析了这一现象的起因。

2.A method for determining the surface roughness parameters of metal film with surface plasmon spectroscopy is proposed.

介绍了确定金属膜表面粗糙度的表面等离子激元光谱方法。

3.These effects are explained by the surface plasmon polariton Bloch modes and self-focusing theory.

这些效应可以用表面等离子体激发和自聚焦理论来解释。

4.The principle of surface plasmon resonance(SPR)is briefly introduced and its applications for the studies on electrochemical processes are reviewed.

简述了表面等离子体共振(SPR)的基本原理,并综述了表面等离子体共振技术在电化学反应过程中的应用。

5.The colours were produced by a process known as plasmon resonance in a patterned aluminium film made in the university's James Watt Nanofabrication Centre.

这所大学詹姆士·沃持纳米制作中心制作的、有图案的铝胶片上的等离子共振给卡片上了颜色。

6.We have experimentally studied the enhancement of channel plasmon polaritons (CPPs) propagating in silver groove surrounded by period corrugations.

模拟结果与实验相符,证明了确实是由于周期性结构导致了沟槽等离激元的增强效应。

7.A plasmon is an electronic surface wave that rolls through the sea of conduction electrons on a metal.

一个是电子表面等离子体波,在金属辊通过海传导电子。

8.A quasi-distributed optical fiber surface plasmon resonance (SPR) sensor based on wavelength division multiplexing is studied.

研究了一种基于波分复用原理的准分布式光纤表面等离子体波传感器。

9.The study of plasmons 等离子体 has opened new avenues in nanotechnology.

plasmon的研究为纳米技术开辟了新的方向。

10.In metallic nanoparticles, plasmons 等离子体 can lead to unique optical properties.

在金属纳米颗粒中,plasmon可以导致独特的光学特性。

11.Researchers are exploring how plasmons 等离子体 can enhance the efficiency of solar cells.

研究人员正在探索如何利用plasmon来提高太阳能电池的效率。

12.The interaction between light and matter can be explained through the concept of a plasmon 等离子体.

光与物质之间的相互作用可以通过plasmon的概念来解释。

13.Surface plasmons 表面等离子体 are crucial for developing new sensing technologies.

表面plasmon对于开发新型传感技术至关重要。

作文

Plasmons are collective oscillations of free electron gas density in metals, which can be excited by incident electromagnetic waves. This phenomenon is particularly significant in the field of nanotechnology and plasmonics, where it plays a crucial role in enhancing light-matter interactions at the nanoscale. Understanding plasmon (等离子体) behavior is essential for developing advanced materials and devices that exploit these interactions for various applications, including sensors, imaging systems, and energy harvesting. The study of plasmons has gained momentum in recent years due to their potential to revolutionize how we manipulate light. Traditional optics relies on lenses and mirrors, which can be bulky and limited in functionality. However, by utilizing plasmons, researchers can create subwavelength optical components that enable us to confine and guide light at scales smaller than the wavelength itself. This opens up new avenues for miniaturizing optical devices and integrating them into electronic systems. One of the most exciting applications of plasmons is in the development of highly sensitive biosensors. By coating metal nanoparticles with biological molecules, we can detect even the slightest changes in the local environment. When a target molecule binds to the sensor, it alters the local dielectric environment, causing a shift in the resonance frequency of the plasmon (等离子体). This shift can be measured with high precision, allowing for real-time monitoring of biological processes. Such sensors have the potential to transform medical diagnostics and environmental monitoring. Moreover, plasmons also play a vital role in energy harvesting technologies. Researchers are exploring how to harness the energy from sunlight through plasmonic structures that can enhance light absorption in solar cells. By integrating plasmonic nanoparticles into the active layers of solar cells, we can significantly increase their efficiency. This is achieved by concentrating light at specific wavelengths, which leads to higher rates of electron generation and ultimately improves the overall performance of the solar cell. In addition to these practical applications, the fundamental understanding of plasmons contributes to our knowledge of quantum mechanics and condensed matter physics. The study of plasmons involves complex interactions between light and electrons, revealing insights into the behavior of materials at the atomic level. This research not only enhances our technological capabilities but also deepens our understanding of the universe's underlying principles. In conclusion, plasmons (等离子体) represent a fascinating area of study with vast implications for technology and science. From biosensors to energy harvesting, the ability to manipulate plasmons opens up new possibilities for innovation. As research continues to advance, we can expect to see even more groundbreaking applications emerge, solidifying the importance of plasmons in both academic and practical realms. The future of nanotechnology and photonics will undoubtedly be shaped by our understanding and utilization of plasmons.

等离子体是金属中自由电子气密度的集体振荡,可以通过入射电磁波激发。这一现象在纳米技术和等离子体学领域尤为重要,它在增强纳米尺度光-物质相互作用方面发挥着关键作用。理解plasmon(等离子体)的行为对于开发利用这些相互作用的先进材料和设备至关重要,这些应用包括传感器、成像系统和能量收集。近年来,plasmons的研究获得了动力,因为它们有潜力彻底改变我们操控光的方式。传统光学依赖于透镜和镜子,这些设备可能笨重且功能有限。然而,通过利用plasmons,研究人员可以创建亚波长光学元件,使我们能够在比波长本身更小的尺度上限制和引导光。这为光学设备的小型化以及将其集成到电子系统中开辟了新的途径。plasmons最令人兴奋的应用之一是在高度敏感的生物传感器的开发中。通过用生物分子涂覆金属纳米粒子,我们可以检测到局部环境中甚至是最微小的变化。当目标分子与传感器结合时,它会改变局部介电环境,从而导致plasmon(等离子体)共振频率的偏移。这个偏移可以高精度地测量,从而实现对生物过程的实时监测。这种传感器有可能改变医学诊断和环境监测。此外,plasmons在能量收集技术中也发挥着重要作用。研究人员正在探索如何通过等离子体结构利用阳光的能量,这些结构可以增强太阳能电池中的光吸收。通过将plasmatic纳米粒子集成到太阳能电池的活性层中,我们可以显著提高其效率。这是通过在特定波长下集中光线来实现的,这导致电子产生速率的提高,最终改善太阳能电池的整体性能。除了这些实际应用外,对plasmons的基本理解也有助于我们对量子力学和凝聚态物理学的认识。对plasmons的研究涉及光与电子之间的复杂相互作用,揭示了材料在原子水平上的行为。这项研究不仅增强了我们的技术能力,还加深了我们对宇宙基本原理的理解。总之,plasmons(等离子体)代表了一个迷人的研究领域,具有广泛的技术和科学意义。从生物传感器到能量收集,操控plasmons的能力为创新开辟了新的可能性。随着研究的不断推进,我们可以期待看到更多突破性的应用出现,巩固plasmons在学术和实践领域的重要性。纳米技术和光子学的未来无疑将受到我们对plasmons的理解和利用的影响。