spectrometry
简明释义
英[spekˈtrɒmɪtri]美[spekˈtrɑːmətri]
n. [光][分化][物] 光谱测定法,[光] 度谱术
英英释义
单词用法
[化]质谱分析法 | |
原子吸收光谱测定法 |
同义词
反义词
例句
1.Mass spectrometry has recently become one of the most informative methods for studying proteins.
质谱最近已经成为研究蛋白质的最能提供信息的方法之一。
2.Multidimensional liquid chromatography coupled with tandem mass spectrometry was used to identify mouse liver plasma membrane(PM) proteins.
采用多维色谱-串联质谱联用技术分析鉴定小鼠肝脏质膜蛋白质。
3.METHODS Based on UV convolution spectrum with PLS method, we used convolution spectrometry of computer information process technology.
方法以紫外褶合光谱为基础,结合PLS法,利用计算机信息处理技术的褶合曲线分析法。
4.The human body odor can also been analysis by Electronics nose and gas chromatography mass spectrometry(GC/MS).
电子鼻、气相色谱质谱等化学分析仪器也可用于人体气味的检测分析。
5.The influence of different concentration of oxalic acid matrix on elemental inductively coupled plasma mass spectrometry was investigated.
研究了不同浓度乙二酸介质对元素电感耦合等离子体质谱行为的影响。
6.The technical background and principle of Ion Mobility Spectrometry technique is introduced in the paper.
介绍动态离子分析技术的技术背景和原理。
7.The structures of the above compounds were assigned by nuclear magnetic resonance, mass spectrometry, and infrared spectroscopy etc.
以上所有化合物的结构通过核磁共振、质谱、红外光谱等确证。
8.In environmental studies, spectrometry 光谱测量法 is essential for detecting pollutants in water.
在环境研究中,光谱测量法对于检测水中的污染物至关重要。
9.The pharmaceutical company employed spectrometry 光谱测量法 to ensure the quality of their drug formulations.
制药公司采用光谱测量法来确保药物配方的质量。
10.Using spectrometry 光谱测量法, scientists can identify various isotopes in a sample.
科学家可以使用光谱测量法识别样品中的各种同位素。
11.The researchers used spectrometry 光谱测量法 to analyze the chemical composition of the sample.
研究人员使用光谱测量法来分析样品的化学成分。
12.The application of spectrometry 光谱测量法 in food safety testing has increased significantly.
在食品安全检测中,光谱测量法的应用显著增加。
作文
Spectrometry is a powerful analytical technique that has revolutionized the field of chemistry and biology. It involves the measurement of the interaction between matter and electromagnetic radiation, allowing scientists to identify and quantify substances in various samples. The term 'spectrometry' refers to a broad range of techniques that utilize the spectrum of light produced by a substance when it is subjected to electromagnetic radiation. This method is crucial in many areas, including environmental monitoring, pharmaceuticals, and even space exploration. 光谱法 (spectrometry) can be divided into several categories, such as mass spectrometry and nuclear magnetic resonance (NMR) spectrometry. Each of these methods has its unique applications and advantages.Mass spectrometry, for instance, is widely used for analyzing complex mixtures and determining the molecular weight of compounds. In this technique, ions are generated from the sample and then separated based on their mass-to-charge ratio. The resulting data provides insights into the composition of the sample, enabling researchers to identify unknown substances or confirm the presence of specific compounds. This ability to analyze minute quantities of material makes mass spectrometry an invaluable tool in drug development and toxicology studies.On the other hand, NMR spectrometry exploits the magnetic properties of certain atomic nuclei. By placing a sample in a strong magnetic field and exposing it to radiofrequency radiation, scientists can obtain detailed information about the structure and dynamics of molecules. This technique is particularly useful in organic chemistry and biochemistry, where understanding molecular structure is essential for synthesizing new compounds or studying biological processes.The importance of 光谱法 (spectrometry) extends beyond laboratory research. In environmental science, it is employed to monitor pollutants in air, water, and soil. By analyzing the spectral signatures of contaminants, scientists can track their sources and assess their impact on ecosystems. Furthermore, in the field of astronomy, spectrometry helps astronomers determine the composition and distance of celestial bodies by analyzing the light they emit or absorb. This information is vital for understanding the universe and our place within it.Despite its numerous advantages, 光谱法 (spectrometry) also presents challenges. The interpretation of spectral data can be complex, requiring specialized knowledge and training. Additionally, the accuracy of results can be influenced by factors such as instrument calibration and sample preparation. As technology advances, however, new software and methodologies are being developed to enhance data analysis and improve the reliability of results.In conclusion, 光谱法 (spectrometry) is an essential tool in modern science that enables the analysis of materials at a molecular level. Its applications span various fields, making it a cornerstone of research and innovation. As we continue to explore the capabilities of this technique, we can expect even more groundbreaking discoveries that will further our understanding of the natural world. Whether in the lab, the field, or outer space, 光谱法 (spectrometry) will undoubtedly play a pivotal role in shaping the future of scientific inquiry.
光谱法是一种强大的分析技术,它彻底改变了化学和生物学领域。它涉及到物质与电磁辐射之间相互作用的测量,使科学家能够识别和定量各种样本中的物质。术语“光谱法”指的是利用物质在电磁辐射作用下产生的光谱的广泛技术。这种方法在许多领域中至关重要,包括环境监测、制药,甚至太空探索。光谱法可以分为几类,例如质谱法和核磁共振(NMR)光谱法。这些方法各有其独特的应用和优点。例如,质谱法广泛用于分析复杂混合物和确定化合物的分子量。在这个技术中,从样品中生成离子,然后根据它们的质荷比进行分离。所得到的数据提供了关于样本组成的见解,使研究人员能够识别未知物质或确认特定化合物的存在。这种分析微量材料的能力使质谱法成为药物开发和毒理学研究中不可或缺的工具。另一方面,核磁共振光谱法利用某些原子核的磁性。通过将样品放置在强磁场中并暴露于射频辐射,科学家可以获得关于分子结构和动态的详细信息。这种技术在有机化学和生物化学中尤为有用,因为理解分子结构对于合成新化合物或研究生物过程至关重要。光谱法的重要性超越了实验室研究。在环境科学中,它被用于监测空气、水和土壤中的污染物。通过分析污染物的光谱特征,科学家可以追踪其来源并评估它们对生态系统的影响。此外,在天文学领域,光谱法帮助天文学家通过分析天体发射或吸收的光来确定其成分和距离。这些信息对于理解宇宙及我们在其中的位置至关重要。尽管光谱法有许多优点,但也面临挑战。光谱数据的解释可能很复杂,需要专业知识和培训。此外,结果的准确性可能受到仪器校准和样品准备等因素的影响。然而,随着技术的进步,新软件和方法正在不断开发,以增强数据分析并提高结果的可靠性。总之,光谱法是现代科学中的一种基本工具,使得在分子层面上分析材料成为可能。它的应用跨越多个领域,使其成为研究和创新的基石。随着我们继续探索这一技术的能力,我们可以期待更多突破性的发现,这将进一步加深我们对自然世界的理解。无论是在实验室、野外还是外太空,光谱法无疑将在塑造科学探究的未来中发挥关键作用。