bioelectric
简明释义
英[ˌbaɪəʊɪlekˈtrɪk]美[ˌbaɪoɪˈlektrɪk]
adj. 生物电的
英英释义
Relating to the electrical phenomena produced by living organisms. | 与生物体产生的电现象相关。 |
Describing the electrical activities that occur in biological systems. | 描述在生物系统中发生的电活动。 |
单词用法
生物电信号 | |
生物电位 | |
生物电现象 | |
生物电刺激 | |
生物电设备 | |
生物电应用 |
同义词
生物电位 | 生物电位测量在神经生理学中至关重要。 | ||
生物电的 | 生物电信号用于医学诊断。 |
反义词
非生物电的 | 该设备基于非生物电原理运作。 | ||
机械的 | Mechanical systems often rely on physical forces rather than bioelectric signals. | 机械系统通常依赖于物理力,而不是生物电信号。 |
例句
1.A mixing frequency excitation current source is designed according to the analysis of requirements of the bioelectric impedance measuring system.
通过分析生物阻抗测量系统的需求,设计了一种应用于生物阻抗测量的混频激励电流源。
2.Healthy rats group (referred to as the blank group) : normal rats 10, with the gastrointestinal bioelectric detection at the same period with the above two groups.
空白组:正常大鼠10只,与上两组同期检测其胃肠生物电。
3.Myocardial bioelectric phenomena and their mechanism the characters of excitation transmission in heart;
心肌细胞(工作细胞和自律细胞)的生物电现象及其形成的机制,心内兴奋传播的特点;
4.The design of the multi-channel bioelectric signal acquisition module is based on Micro-Controller-Unit (MCU) which can measure ECG and detect heart rate during sleep.
基于MCU的多路电生理信号采集模块适用于睡眠中的应用,为睡眠心率检测提供最直观、严格的手段。
5.These equations are the base of the bioelectric currents detecting and the function imaging of tissue.
这些方程是进行生物电流检测和组织功能成像的理论基础。
6.V bioelectric summer quilts is applied to various diseases caused by microcirculation;
电夏凉被适用于微循环障碍引起的各种疾病;
7.Understanding bioelectric 生物电 mechanisms can lead to breakthroughs in nerve repair.
理解生物电机制可能会在神经修复方面取得突破。
8.The study of bioelectric 生物电 signals is crucial for developing new medical devices.
对生物电信号的研究对开发新型医疗设备至关重要。
9.Researchers are exploring bioelectric 生物电 phenomena in the context of regenerative medicine.
研究人员正在探索再生医学中的生物电现象。
10.The bioelectric 生物电 properties of tissues can influence healing processes.
组织的生物电特性可以影响愈合过程。
11.The bioelectric 生物电 activity of the heart is monitored using electrocardiograms.
心脏的生物电活动通过心电图进行监测。
作文
The term bioelectric refers to the electrical phenomena that occur within living organisms. These phenomena are crucial for various biological processes, including nerve impulses and muscle contractions. Understanding bioelectric signals is essential in fields like medicine, biology, and bioengineering. For instance, when a nerve cell is stimulated, it generates an electrical signal that travels along the neuron. This process is known as action potential, which is a fundamental concept in neurobiology. The study of bioelectric signals has led to significant advancements in medical technology, such as the development of electrocardiograms (ECGs) and electroencephalograms (EEGs). These devices measure the bioelectric activity of the heart and brain, respectively, providing critical information about a patient's health.Moreover, bioelectric phenomena play a vital role in regenerative medicine. Researchers are exploring how bioelectric signals can influence stem cell behavior and tissue regeneration. For example, scientists have discovered that applying specific electrical fields can direct stem cells to differentiate into desired cell types, potentially leading to breakthroughs in treating injuries and degenerative diseases. This intersection of bioelectric science and regenerative medicine highlights the importance of understanding these electrical processes at a cellular level.In addition to medical applications, bioelectric principles are also being harnessed in the field of bioenergy. Some researchers are investigating how living organisms can produce electricity through their metabolic processes. For instance, certain bacteria can convert organic waste into electricity, a process known as microbial fuel cells. This innovative approach not only provides a renewable energy source but also offers a sustainable way to manage waste. By tapping into the bioelectric capabilities of microorganisms, we can develop cleaner energy solutions that benefit both the environment and society.Furthermore, the study of bioelectric phenomena extends to the realm of environmental science. Researchers are examining how electrical signals in plants can respond to environmental changes, such as drought or nutrient availability. This knowledge can lead to improved agricultural practices, helping farmers optimize crop yields while minimizing resource use. Understanding the bioelectric responses of plants may also contribute to the development of more resilient crops that can withstand climate change.In conclusion, the concept of bioelectric encompasses a wide range of applications and implications across various scientific disciplines. From medical diagnostics to regenerative medicine and renewable energy, the study of bioelectric phenomena continues to reveal new insights into the complexities of life. As we deepen our understanding of these electrical processes, we open doors to innovative solutions that can address some of the most pressing challenges facing humanity today. Embracing the potential of bioelectric science will undoubtedly shape the future of technology, healthcare, and environmental sustainability.
“生物电”一词指的是在生物体内发生的电现象。这些现象对于各种生物过程至关重要,包括神经冲动和肌肉收缩。理解“生物电”信号在医学、生物学和生物工程等领域是必不可少的。例如,当神经细胞受到刺激时,会产生沿着神经元传播的电信号。这个过程被称为动作电位,这是神经生物学中的一个基本概念。“生物电”信号的研究推动了医学技术的重大进步,例如心电图(ECG)和脑电图(EEG)的发展。这些设备分别测量心脏和大脑的“生物电”活动,提供关于患者健康的重要信息。此外,“生物电”现象在再生医学中也发挥着重要作用。研究人员正在探索如何利用“生物电”信号影响干细胞行为和组织再生。例如,科学家们发现施加特定的电场可以引导干细胞分化成所需的细胞类型,这可能导致治疗伤害和退行性疾病的突破。生物电科学与再生医学的交汇强调了理解这些电过程在细胞水平上的重要性。除了医学应用外,“生物电”原理还在生物能源领域得到了利用。一些研究人员正在调查活生物体如何通过其代谢过程产生电能。例如,某些细菌可以将有机废物转化为电能,这一过程被称为微生物燃料电池。这种创新方法不仅提供了一种可再生能源来源,还为管理废物提供了一种可持续的方法。通过利用微生物的“生物电”能力,我们可以开发出既有利于环境又有利于社会的更清洁的能源解决方案。此外,“生物电”现象的研究还扩展到环境科学领域。研究人员正在研究植物中的电信号如何响应环境变化,例如干旱或营养物质的可用性。这一知识可以促进农业实践的改善,帮助农民在最小化资源使用的同时优化作物产量。理解植物的“生物电”反应也可能有助于开发出更能抵御气候变化的抗逆作物。总之,“生物电”的概念涵盖了各个科学学科中广泛的应用和影响。从医学诊断到再生医学和可再生能源,对“生物电”现象的研究不断揭示出生命复杂性的新的见解。随着我们对这些电过程的理解加深,我们为解决人类面临的一些最紧迫挑战打开了新的思路。拥抱“生物电”科学的潜力无疑将塑造未来的技术、医疗保健和环境可持续性。