nonhistone
简明释义
英[ˌnɑnˈhɪstoʊn]美[ˌnɑnˈhɪstoʊn]
adj. 非组蛋白的(指富含芳香氨基酸的)
英英释义
Referring to proteins that are not histones, which are involved in the structural organization of chromatin but do not have the same function as histones. | 指那些不是组蛋白的蛋白质,这些蛋白质参与染色质的结构组织,但与组蛋白没有相同的功能。 |
单词用法
同义词
反义词
组蛋白 | Histones are proteins that help package DNA into a compact, dense shape. | 组蛋白是帮助将DNA包装成紧凑、致密形状的蛋白质。 |
例句
1.Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin.
操作上讲,修饰功能或者通过中断染色质接触或通过影响非组蛋白蛋白质招募到染色质上。
2.Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin.
操作上讲,修饰功能或者通过中断染色质接触或通过影响非组蛋白蛋白质招募到染色质上。
3.The interaction between histones and nonhistone proteins is crucial for DNA packaging.
组蛋白与非组蛋白蛋白之间的相互作用对DNA包装至关重要。
4.In cancer research, nonhistone proteins have been identified as potential therapeutic targets.
在癌症研究中,非组蛋白蛋白被确定为潜在的治疗靶点。
5.The study focused on the role of nonhistone proteins in gene regulation.
这项研究集中于非组蛋白蛋白在基因调控中的作用。
6.The function of nonhistone proteins varies widely across different cell types.
非组蛋白蛋白的功能在不同细胞类型中差异很大。
7.Researchers discovered that nonhistone factors can influence chromatin structure.
研究人员发现非组蛋白因子可以影响染色质结构。
作文
In the realm of molecular biology, understanding the intricate details of chromatin structure is essential for grasping how genes are regulated. Chromatin is composed of DNA and proteins, with histones being the most well-known type of protein involved in this complex. However, there exists another category of proteins that plays a crucial role in the organization and function of chromatin—these are known as nonhistone proteins. The term nonhistone refers to all the chromatin-associated proteins that are not classified as histones. Unlike histones, which primarily serve to package DNA into nucleosomes, nonhistone proteins are involved in various functions including gene regulation, DNA repair, and chromatin remodeling.The diversity of nonhistone proteins is vast. They can be categorized into several groups based on their functions. For instance, transcription factors are a type of nonhistone protein that bind to specific DNA sequences to regulate the transcription of genes. Additionally, there are structural nonhistone proteins that help maintain the integrity of chromatin structure. These proteins ensure that the DNA is properly organized within the nucleus, facilitating efficient access for transcription machinery.Moreover, nonhistone proteins also play a significant role in the dynamic processes of chromatin remodeling. This process is essential for allowing certain genes to be expressed while keeping others silenced. For example, during cellular differentiation, specific nonhistone proteins can modify chromatin structure to enable the expression of genes necessary for the development of particular cell types.Interestingly, some nonhistone proteins are involved in the response to DNA damage. When DNA is damaged, certain nonhistone proteins are recruited to the site of damage to facilitate repair processes. This highlights the importance of these proteins not only in normal cellular function but also in maintaining genomic stability.Research has shown that alterations in nonhistone proteins can lead to various diseases, including cancer. Mutations or dysregulation of nonhistone proteins can disrupt normal gene expression patterns, contributing to the uncontrolled cell growth characteristic of cancer. Therefore, studying nonhistone proteins is vital for understanding the underlying mechanisms of various diseases and developing potential therapeutic strategies.In conclusion, nonhistone proteins are integral components of chromatin that contribute to a wide range of biological processes. Their diverse functions, from gene regulation to DNA repair, underscore their importance in maintaining cellular health and function. As research continues to unravel the complexities of nonhistone proteins, we gain deeper insights into the fundamental principles of genetics and the potential implications for human health. Understanding nonhistone proteins not only enhances our knowledge of molecular biology but also opens new avenues for medical research and treatment strategies.
在分子生物学领域,理解染色质结构的复杂细节对于掌握基因调控至关重要。染色质由DNA和蛋白质组成,其中组蛋白是参与这一复杂过程的最著名的蛋白质类型。然而,还有另一类蛋白质在染色质的组织和功能中发挥着至关重要的作用——这些被称为非组蛋白蛋白质。术语非组蛋白指的是所有不被归类为组蛋白的与染色质相关的蛋白质。与主要用于将DNA包装成核小体的组蛋白不同,非组蛋白蛋白质则涉及多种功能,包括基因调控、DNA修复和染色质重塑。非组蛋白蛋白质的多样性是巨大的。它们可以根据功能分为几类。例如,转录因子是一种非组蛋白蛋白质,它们结合特定的DNA序列以调节基因的转录。此外,还有结构非组蛋白蛋白质,有助于维持染色质结构的完整性。这些蛋白质确保DNA在细胞核内得到适当组织,从而促进转录机制的高效访问。此外,非组蛋白蛋白质还在染色质重塑的动态过程中发挥重要作用。这个过程对于允许某些基因表达而保持其他基因沉默至关重要。例如,在细胞分化过程中,特定的非组蛋白蛋白质可以修改染色质结构,以使得特定细胞类型所需基因的表达成为可能。有趣的是,一些非组蛋白蛋白质参与对DNA损伤的响应。当DNA受损时,某些非组蛋白蛋白质会被招募到损伤部位,以促进修复过程。这突显了这些蛋白质在正常细胞功能和维持基因组稳定性方面的重要性。研究表明,非组蛋白蛋白质的改变可能导致各种疾病,包括癌症。非组蛋白蛋白质的突变或失调可能会扰乱正常的基因表达模式,导致癌症特征的细胞不受控制的生长。因此,研究非组蛋白蛋白质对于理解各种疾病的潜在机制以及开发治疗策略至关重要。总之,非组蛋白蛋白质是染色质的重要组成部分,对广泛的生物过程做出贡献。它们的多样化功能,从基因调控到DNA修复,强调了它们在维持细胞健康和功能中的重要性。随着研究继续揭示非组蛋白蛋白质的复杂性,我们对遗传学的基本原则及其对人类健康的潜在影响有了更深入的了解。理解非组蛋白蛋白质不仅增强了我们对分子生物学的知识,还为医学研究和治疗策略开辟了新的途径。