photoemission
简明释义
英[ˌfəʊtəʊɪˈmɪʃ(ə)n]美[ˌfoʊtoʊɪˈmɪʃn]
n. [电子] 光电发射;光电效应
英英释义
Photoemission is the process by which electrons are emitted from a material after it absorbs photons, typically as a result of exposure to light. | 光发射是指材料在吸收光子后释放电子的过程,通常是由于暴露于光线下所致。 |
单词用法
光发射光谱法 | |
光发射电子显微镜 | |
表面的光发射 | |
研究光发射 | |
增强的光发射 | |
光发射实验 |
同义词
光电子发射 | The photoemission process is crucial in understanding the electronic properties of materials. | 光发射过程在理解材料的电子特性方面至关重要。 |
反义词
吸收 | The material's absorption of light can affect its temperature. | 材料对光的吸收会影响其温度。 | |
非发射 | In some cases, non-emission processes are more efficient than photoemission. | 在某些情况下,非发射过程比光发射更有效。 |
例句
1.This paper briefly introduces the basic principles to measure plancks constant by photoemission and the three methods to measure cut-off voltage.
介绍了光电效应实验中通过确定截止电压测量普朗克常数的方法,并分析了实验中产生误差的原因,指出减小误差的方法。
2.The principle of GaAs photoemission polarized electrons and a very simple kind of GaAs polarized electron source are introduced in this paper.
本文介绍自旋极化电子产生的原理及一种设计简洁、结构简单的极化电子源装置。
3.The energy levels calculated with the TNP, DNP and DND basis sets can play important roles in analyzing light absorption and photoemission experiments.
采用TNP,DNP和DND这三种基组所得的能级和态密度可用于分析光吸收,光电子发射等实验数据。
4.The chemical structures of the films which are prepared under different conditions are analyzed with X-ray photoemission spectroscopy.
利用X射线光电子能谱来探测不同制备条件下薄膜样品的化学结构。
5.This article introduces the technical index about the measurer of a new Planck constant and the methods of demonstrating photoemission phenomenon and measuring Planck constant.
介绍了新型普朗克常数测定器的主要技术指标,并介绍了用该仪器演示光电效应现象和测定普朗克常数的方法。
6.The equation of Einstein photoemission can fully explain experimental rule of photoemission.
爱因斯坦光电效应方程可以完满地解释光电效应的实验规律。
7.In chapter 2, we review the history of photoemission study about the copper oxide high-temperature superconductors copper oxides.
第二章介绍了人们对高温超导铜氧化物的光电子谱的研究历史。
8.The theoretical results have been verified by both the experimental photoemission spectra and ground-state properties, as well as the superconductivity data.
理论结果用实验的光发射谱和基态性质以及超导数据进行了验证。
9.Researchers used photoemission 光发射 spectroscopy to analyze the surface states of the semiconductor.
研究人员使用光发射 光发射光谱法分析半导体的表面状态。
10.In this experiment, the photoemission 光发射 technique was crucial for measuring the energy levels of electrons.
在这个实验中,光发射 光发射技术对于测量电子的能级至关重要。
11.The study of photoemission 光发射 helps us understand the electronic properties of materials.
对光发射 光发射的研究帮助我们理解材料的电子特性。
12.The photoemission 光发射 effect can be observed when light strikes a metal surface.
当光照射到金属表面时,可以观察到光发射 光发射效应。
13.Advancements in photoemission 光发射 technology have led to better imaging techniques in material science.
在光发射 光发射技术方面的进步导致了材料科学中更好的成像技术。
作文
Photoemission is a fascinating phenomenon that occurs when light interacts with matter, leading to the ejection of electrons from the surface of a material. This process is not only crucial for understanding fundamental physical principles but also has significant applications in various fields, including material science, nanotechnology, and even astrophysics. In this essay, I will explore the concept of photoemission (光电发射) in detail, discussing its mechanisms, applications, and implications for future research.To begin with, the basic principle of photoemission (光电发射) can be explained through the photoelectric effect, which was first described by Albert Einstein in 1905. When photons of sufficient energy strike a material, they can transfer their energy to electrons within that material. If the energy of the incoming photon exceeds the work function of the material—the minimum energy required to release an electron—then the electron can escape from the surface. This interaction between light and electrons is a key area of study in both physics and engineering.One of the most significant applications of photoemission (光电发射) is in the development of photoelectron spectroscopy, a technique used to analyze the electronic structure of materials. By measuring the kinetic energy of the emitted electrons, researchers can gain insights into the energy levels of electrons within atoms and molecules. This information is invaluable for understanding chemical bonding, material properties, and even the behavior of complex systems at the nanoscale. Consequently, photoemission (光电发射) techniques have become essential tools in surface science and materials characterization.Moreover, photoemission (光电发射) plays a vital role in the functioning of various technologies, such as photovoltaic cells and photodetectors. In photovoltaic cells, sunlight is absorbed by semiconductor materials, causing the emission of electrons and generating electric current. This process highlights the importance of optimizing photoemission (光电发射) characteristics to improve the efficiency of solar energy conversion. Similarly, photodetectors rely on photoemission (光电发射) to convert light signals into electrical signals, making them crucial components in optical communication systems.In addition to its practical applications, the study of photoemission (光电发射) has broader implications for our understanding of the universe. For instance, astrophysicists utilize photoemission (光电发射) phenomena to analyze the composition of distant stars and galaxies. By examining the light emitted from these celestial bodies, scientists can infer the presence of specific elements and understand their physical conditions. This ability to probe the cosmos through light and electron interactions underscores the interconnectedness of various scientific disciplines.As we look to the future, the exploration of photoemission (光电发射) continues to be a vibrant area of research. Advances in technology, such as high-resolution imaging and ultrafast laser systems, are enabling scientists to investigate photoemission (光电发射) processes with unprecedented precision. These innovations promise to unlock new avenues for understanding complex materials and phenomena, potentially leading to breakthroughs in areas like quantum computing and nanomaterials.In conclusion, photoemission (光电发射) is a critical process that bridges the gap between light and matter, providing insights into both fundamental physics and practical applications. Its significance spans multiple fields, from material science to astrophysics, highlighting the importance of interdisciplinary research. As we continue to delve deeper into the mechanisms and applications of photoemission (光电发射), we are likely to uncover new knowledge that will shape the future of science and technology.
光电发射是一个迷人的现象,当光与物质相互作用时,会导致电子从材料表面逸出。这个过程不仅对理解基本物理原理至关重要,而且在材料科学、纳米技术甚至天体物理等多个领域都有重要应用。在这篇文章中,我将详细探讨光电发射(photoemission)的概念,讨论其机制、应用及其对未来研究的影响。首先,光电发射(photoemission)的基本原理可以通过爱因斯坦在1905年首次描述的光电效应来解释。当足够能量的光子撞击材料时,它们可以将能量传递给该材料中的电子。如果入射光子的能量超过了材料的功函数——释放电子所需的最小能量,那么电子就可以逃离表面。这种光与电子之间的相互作用是物理学和工程学研究的关键领域。光电发射(photoemission)最重要的应用之一是光电子能谱学的发展,这是一种用于分析材料电子结构的技术。通过测量发射电子的动能,研究人员可以深入了解原子和分子内部电子的能级。这些信息对于理解化学键、材料特性,甚至复杂系统在纳米尺度上的行为都是无价的。因此,光电发射(photoemission)技术已成为表面科学和材料表征的重要工具。此外,光电发射(photoemission)在各种技术的功能中也起着至关重要的作用,例如光伏电池和光电探测器。在光伏电池中,阳光被半导体材料吸收,导致电子的发射并产生电流。这个过程强调了优化光电发射(photoemission)特性以提高太阳能转化效率的重要性。同样,光电探测器依赖于光电发射(photoemission)将光信号转换为电信号,使其成为光通信系统中的关键组件。除了其实际应用外,光电发射(photoemission)的研究对我们理解宇宙也具有更广泛的意义。例如,天体物理学家利用光电发射(photoemission)现象来分析遥远恒星和星系的成分。通过检查这些天体发出的光,科学家可以推断出特定元素的存在,并了解它们的物理条件。这种通过光和电子相互作用探测宇宙的能力突显了各个科学学科之间的相互联系。展望未来,光电发射(photoemission)的探索仍然是一个充满活力的研究领域。高分辨率成像和超快激光系统等技术的进步使科学家能够以前所未有的精度研究光电发射(photoemission)过程。这些创新有望开启新的理解复杂材料和现象的途径,可能导致量子计算和纳米材料等领域的突破。总之,光电发射(photoemission)是一个关键过程,架起了光与物质之间的桥梁,为基本物理学和实际应用提供了见解。它的重要性跨越多个领域,从材料科学到天体物理学,突显了跨学科研究的重要性。随着我们继续深入研究光电发射(photoemission)的机制和应用,我们很可能会发现新的知识,这将塑造科学和技术的未来。