monopropellant
简明释义
英[ˌmɒnəʊprəˈpelənt]美[ˌmɑːnoʊprəˈpelənt]
n. 单一组分的喷气机燃料
英英释义
单词用法
单推进剂火箭发动机 | |
单推进剂推进器 | |
单推进剂燃料 | |
单推进剂的用途 | |
单推进剂推进系统 | |
单推进剂的储存 |
同义词
单一推进剂 | Monopropellant systems are often used in small satellite thrusters. | 单推进剂系统常用于小型卫星的推进器。 | |
单推进剂燃料 | The rocket utilizes a single-propellant mechanism for efficient thrust. | 这款火箭利用单一推进剂机制实现高效推力。 |
反义词
双组元推进剂 | Bipropellant engines are generally more efficient than monopropellant engines. | 双组元发动机通常比单组元发动机更高效。 |
例句
1.The (investigation) results show that the curves of combustion flame temperature distribution in all combustion course are accurately measured by relative intensity method for monopropellant HNIW.
结果表明,相对强度法能准确地测出单元推进剂HNIW在整个燃烧过程的温度分布曲线,测得的最高燃烧火焰温度低于相应压力下的理论计算温度;
2.Related to bond polarity, formal charges on atoms, chain reaction theory and the comparison of solid monopropellant combustion and modeling, the "linkage mutualism"mechanism was proposed.
基于凝相机理与热解实验,从分子层面和化学反应的角度,结合价键、形式电荷、链反应等理论和固体单元推进剂的燃烧状况,提出了AP与HMX间的“连锁互动”机制。
3.Thermal control of monopropellant catalytic decomposition hydrazine engines in important portion of space propulsive system.
单组元肼分解发动机的热控制与热分析是空间推进系统重要组成部分。
4.Catalyst of the organo-metallic compound (OME) on the combustion and thermal decomposition of HNIW monopropellant was investigated through burning rate measurement, DSC and TG thermal analysis.
通过燃速测定、差示扫描量热技术(dsc)和热失重技术(TG)研究了有机金属化合物催化剂(ome)对六硝基六氮杂异伍兹烷(HNIW)单元推进剂热分解和燃烧性能的影响。
5.Based on a thermal model of monopropellant thrust chamber system including its components such as adiabatic frame, catalyst bed, nozzle etc.
建立了单组元发动机推力室系统(包括结构部件如隔热框、催化床、喷管等)的传热模型。
6.The research emphasis is restartable nitrous oxide monopropellant thruster suitable for keeping the position and phase of small satellite.
研究重点是可多次启动的一氧化二氮单元推进剂推力室,适用于小卫星的位置保持和相位保持。
7.The (investigation) results show that the curves of combustion flame temperature distribution in all combustion course are accurately measured by relative intensity method for monopropellant HNIW.
结果表明,相对强度法能准确地测出单元推进剂HNIW在整个燃烧过程的温度分布曲线,测得的最高燃烧火焰温度低于相应压力下的理论计算温度;
8.The use of monopropellant simplifies the design of rocket engines.
使用单推进剂简化了火箭发动机的设计。
9.Hydrogen peroxide is a common example of a monopropellant used in small thrusters.
过氧化氢是小型推进器中常用的单推进剂示例。
10.The spacecraft uses a monopropellant for its propulsion system.
这艘宇宙飞船使用单推进剂作为其推进系统。
11.Unlike bipropellants, a monopropellant requires only one component to function.
与双推进剂不同,单推进剂仅需要一个组成部分即可运行。
12.Engineers are testing the efficiency of a new monopropellant in the lab.
工程师们正在实验室测试一种新型单推进剂的效率。
作文
In the realm of aerospace engineering, fuel types play a crucial role in determining the efficiency and effectiveness of spacecraft propulsion systems. One such type is known as monopropellant, which refers to a propellant that consists of a single chemical substance that decomposes to produce thrust. Unlike bipropellant systems, which require two components—a fuel and an oxidizer—monopropellant systems simplify the propulsion process by utilizing only one substance. This characteristic makes them particularly advantageous in specific applications, such as satellite thrusters and small maneuvering engines.The most common example of a monopropellant is hydrazine, a highly energetic compound that decomposes exothermically when it comes into contact with a catalyst. The decomposition reaction produces hot gases that are expelled through a nozzle, generating thrust. The simplicity of using a single chemical reduces the complexity of storage and handling, which is a significant advantage for missions where weight and space are at a premium.One of the primary benefits of monopropellant systems is their reliability. Since they do not require the mixing of two separate components, there is less risk of combustion instability or other complications that can arise with bipropellant systems. This reliability is crucial for missions that involve precise maneuvers, such as maintaining a satellite's orbit or adjusting its position in space. Additionally, monopropellant systems can be stored for extended periods without degrading, making them ideal for long-duration space missions.However, monopropellant systems are not without their drawbacks. The specific impulse, a measure of the efficiency of rocket propellants, tends to be lower for monopropellant systems compared to their bipropellant counterparts. This means that while they are easy to use and reliable, they may not provide the same level of performance in terms of thrust-to-weight ratio. As a result, engineers must carefully consider the mission requirements when choosing between monopropellant and bipropellant systems.In recent years, research has been focused on developing alternative monopropellant options that could offer improved performance. For instance, new formulations that utilize environmentally friendly propellants are being explored. These alternatives aim to mitigate the environmental impact associated with traditional propellants like hydrazine, which can be toxic and hazardous to handle. Innovations in this field could lead to more sustainable practices in spacecraft design and operation.In conclusion, monopropellant systems represent a vital component of modern propulsion technology. Their simplicity, reliability, and ease of use make them an attractive choice for many aerospace applications. While they may not always match the performance metrics of bipropellant systems, ongoing research and development efforts are likely to enhance their capabilities and expand their applicability in future missions. As the aerospace industry continues to evolve, understanding the role of monopropellant fuels will be essential for engineers and scientists working to push the boundaries of space exploration.
在航空航天工程领域,燃料类型在确定航天器推进系统的效率和有效性方面发挥着至关重要的作用。其中一种类型被称为单组元推进剂,指的是由单一化学物质组成的推进剂,该物质分解以产生推力。与需要两个组成部分(燃料和氧化剂)的双组元系统不同,单组元推进剂系统通过仅使用一种物质简化了推进过程。这一特性使其在特定应用中特别具有优势,例如卫星推进器和小型机动发动机。单组元推进剂的最常见例子是肼,这是一种高能化合物,在与催化剂接触时会发生放热分解反应。分解反应产生的热气体通过喷嘴排出,从而产生推力。使用单一化学物质的简单性减少了储存和处理的复杂性,这对于重量和空间至关重要的任务来说是一个显著的优势。单组元推进剂系统的主要优点之一是其可靠性。由于不需要混合两个独立的组成部分,因此发生燃烧不稳定或其他可能与双组元系统相关的并发症的风险较小。这种可靠性对于涉及精确机动的任务至关重要,例如维持卫星轨道或调整其在太空中的位置。此外,单组元推进剂系统可以长时间储存而不会降解,使其成为长期太空任务的理想选择。然而,单组元推进剂系统并非没有缺点。相比于双组元系统,单组元推进剂系统的比冲(衡量火箭推进剂效率的指标)往往较低。这意味着虽然它们易于使用且可靠,但在推重比方面可能无法提供相同水平的性能。因此,工程师在选择单组元推进剂和双组元系统时必须仔细考虑任务要求。近年来,研究集中在开发替代的单组元推进剂选项,这些选项可能提供更好的性能。例如,正在探索利用环保推进剂的新配方。这些替代品旨在减轻与传统推进剂(如肼)相关的环境影响,因为这些推进剂可能是有毒的且处理起来危险。该领域的创新可能导致航天器设计和操作中更可持续的实践。总之,单组元推进剂系统代表了现代推进技术的重要组成部分。它们的简单性、可靠性和易用性使其成为许多航空航天应用的吸引选择。尽管它们在性能指标上可能无法始终与双组元系统匹敌,但正在进行的研究和开发努力很可能会增强它们的能力并扩大其在未来任务中的适用性。随着航空航天行业的不断发展,理解单组元推进剂燃料的作用将对致力于推动太空探索边界的工程师和科学家至关重要。