biosynthetic
简明释义
英[ˌbaɪəʊsɪnˈθetɪk]美[ˌbaɪosɪnˈθetɪk]
adj. 生物合成的
英英释义
Relating to the synthesis of substances by living organisms or biological processes. | 与生物体或生物过程合成物质有关。 |
单词用法
生物合成产品 | |
生物合成机制 | |
生物合成基因簇 | |
生物合成来源 | |
生物合成能力 | |
涉及的生物合成途径 |
同义词
生化的 | Biochemical processes are crucial for understanding metabolism. | 生化过程对于理解新陈代谢至关重要。 | |
生源的 | 生源材料可以从活生物体中提取。 | ||
合成的 | 合成化合物常用于药物制造。 |
反义词
合成的 | 合成材料常用于制造业。 | ||
非生物合成的 | 非生物合成过程不涉及生物体。 |
例句
1.The purpose of this paper is to review citrinin's physicochemical properties, toxicity, inhibiting bacteria activity, analytical methods, biosynthetic pathway, gene clone, etc.
本文介绍了红曲霉桔霉素的理化性质、毒性、抑菌性、检测方法、生物合成途径及基因克隆等内容。
2.So the polyketide pathway is presumed to be the main biosynthetic pathway of antibiotic monascus pigments.
所以聚酮途径被认为是红曲色素合成的主要途径。
3.The recent advances in biodegradable polymers for medical applications were reviewed according chemical synthetic, biosynthetic and natural polymers respectively.
对目前医用可生物降解高分予材料的研究及应用状况分化学合成、天然和生物技术合成三类作了综述。
4.Two or more biosynthetic pathways may coexist in a single cell.
在同一细胞中可能同时存在两条或更多条生物合成途径。
5.The invention also provides isolated genes of the biosynthetic cluster and their corresponding proteins.
本发明还提供生物合成簇的分离基因及其相应的蛋白。
6.At present, the research of terpenoid biosynthetic pathway and control of key enzymes have become a hot point in biology filed.
植物类萜生物合成途径的调控以及该途径中关键酶的研究已成为目前国内外生物学领域的一大热点。
7.The biosynthetic 生物合成 pathway of penicillin was first discovered in the 20th century.
青霉素的生物合成途径在20世纪首次被发现。
8.The researchers developed a new method for producing drugs through biosynthetic 生物合成 pathways.
研究人员开发了一种通过生物合成途径生产药物的新方法。
9.Genetic engineering can enhance biosynthetic 生物合成 capabilities in microorganisms.
基因工程可以增强微生物的生物合成能力。
10.Scientists are exploring biosynthetic 生物合成 routes to create sustainable biofuels.
科学家们正在探索创建可持续生物燃料的生物合成途径。
11.Many natural products are derived from biosynthetic 生物合成 processes in plants.
许多天然产品来自植物中的生物合成过程。
作文
In recent years, the field of biotechnology has made significant strides in various areas, one of which is the development of biosynthetic pathways. These pathways are crucial for the production of complex organic molecules that are essential for life. The term biosynthetic refers to the process by which living organisms produce these molecules through a series of enzymatic reactions. This process is not only fascinating from a biological perspective but also holds immense potential for practical applications in medicine, agriculture, and environmental sustainability.To understand the importance of biosynthetic processes, we can look at how they contribute to the production of antibiotics. For instance, penicillin, one of the first antibiotics discovered, is produced by the biosynthetic activity of the mold Penicillium chrysogenum. Researchers have studied this biosynthetic pathway extensively to enhance the yield of penicillin through fermentation techniques. By manipulating the genetic makeup of the mold, scientists can improve its ability to produce higher quantities of the antibiotic, which is crucial for combating bacterial infections.Moreover, biosynthetic processes are not limited to antibiotics; they also play a vital role in the production of vitamins, hormones, and other essential biomolecules. For example, the biosynthetic pathway for Vitamin C in plants involves a series of enzymatic steps that convert glucose into ascorbic acid. Understanding these pathways allows researchers to explore ways to enhance the nutritional content of crops, which can be particularly beneficial in regions facing food insecurity.The application of biosynthetic technology extends beyond natural products. With advancements in synthetic biology, scientists are now able to engineer microorganisms to produce valuable compounds that are traditionally derived from plants or animals. For instance, yeast and bacteria can be genetically modified to create biofuels, pharmaceuticals, and even biodegradable plastics. This innovative approach not only provides a sustainable alternative to conventional methods but also reduces the environmental impact associated with resource extraction and processing.However, the development of biosynthetic technologies raises important ethical and regulatory questions. As we manipulate the genetic code of living organisms, we must consider the potential risks and benefits. It is crucial to establish guidelines that ensure the safety and efficacy of biosynthetic products while promoting responsible research practices. Public acceptance of these technologies is also essential, as misconceptions about genetic engineering can lead to resistance against their implementation.In conclusion, the study of biosynthetic pathways offers exciting opportunities for innovation across various sectors. Whether it is improving healthcare through the production of antibiotics, enhancing food security by fortifying crops, or developing sustainable alternatives to traditional materials, the potential applications are vast. As we continue to explore the intricacies of biosynthetic processes, it is imperative that we do so with a sense of responsibility and awareness of the broader implications. The future of biotechnology depends on our ability to harness these natural processes while ensuring the well-being of our planet and its inhabitants.
近年来,生物技术领域在各个方面取得了重大进展,其中之一就是开发生物合成途径。这些途径对于生产生命所需的复杂有机分子至关重要。术语生物合成是指生物体通过一系列酶促反应产生这些分子的过程。从生物学的角度来看,这一过程不仅令人着迷,而且在医学、农业和环境可持续性等实际应用中具有巨大的潜力。为了理解生物合成过程的重要性,我们可以看看它们如何促进抗生素的生产。例如,青霉素是发现的第一种抗生素之一,由真菌青霉菌(Penicillium chrysogenum)的生物合成活动产生。研究人员对这一生物合成途径进行了广泛研究,以通过发酵技术提高青霉素的产量。通过操控真菌的遗传组成,科学家可以提高其生产更高数量抗生素的能力,这对于抗击细菌感染至关重要。此外,生物合成过程不仅限于抗生素;它们在维生素、激素和其他必需生物分子的生产中也发挥着重要作用。例如,植物中的维生素C的生物合成途径涉及一系列酶促步骤,将葡萄糖转化为抗坏血酸。了解这些途径使研究人员能够探索增强作物营养成分的方法,这在面临粮食不安全的地区尤为重要。生物合成技术的应用超越了天然产品。随着合成生物学的进步,科学家现在能够工程化微生物来生产传统上来源于植物或动物的有价值化合物。例如,酵母和细菌可以被基因改造以制造生物燃料、药品甚至可生物降解塑料。这种创新方法不仅提供了对传统方法的可持续替代方案,还减少了与资源开采和加工相关的环境影响。然而,生物合成技术的发展引发了重要的伦理和监管问题。当我们操控生物体的遗传密码时,我们必须考虑潜在的风险和收益。建立确保生物合成产品安全性和有效性的指导方针,同时促进负责任的研究实践至关重要。公众对这些技术的接受度也是必不可少的,因为对基因工程的误解可能导致抵制其实施。总之,研究生物合成途径为各个行业的创新提供了令人兴奋的机会。无论是通过抗生素的生产改善医疗保健,还是通过强化作物增强粮食安全,或是开发传统材料的可持续替代品,潜在的应用都是广泛的。随着我们继续探索生物合成过程的复杂性,必须以责任感和对更广泛影响的意识来进行。生物技术的未来取决于我们利用这些自然过程的能力,同时确保我们星球及其居民的福祉。