calcium carbonate compe nsation depth

简明释义

碳酸钙补偿深度;

英英释义

Calcium carbonate compensation depth (CCD) is the ocean depth at which the rate of calcium carbonate accumulation equals the rate of dissolution, resulting in a balance where calcium carbonate does not accumulate below this depth.

钙碳酸补偿深度(CCD)是指海洋深度,在该深度钙碳酸盐的沉积速率等于溶解速率,导致在此深度以下钙碳酸盐不再积累的平衡状态。

例句

1.Researchers measured the calcium carbonate compensation depth 碳酸钙补偿深度 to assess the impact of ocean warming.

研究人员测量了calcium carbonate compensation depth 碳酸钙补偿深度以评估海洋变暖的影响。

2.The study of ocean acidity is crucial for understanding the calcium carbonate compensation depth 碳酸钙补偿深度 in marine ecosystems.

研究海洋酸度对于理解海洋生态系统中的calcium carbonate compensation depth 碳酸钙补偿深度至关重要。

3.In deep waters, below the calcium carbonate compensation depth 碳酸钙补偿深度, calcium carbonate dissolves more rapidly.

在深水区,低于calcium carbonate compensation depth 碳酸钙补偿深度时,碳酸钙溶解得更快。

4.The calcium carbonate compensation depth 碳酸钙补偿深度 is essential for predicting the future of marine biodiversity.

了解calcium carbonate compensation depth 碳酸钙补偿深度对于预测海洋生物多样性的未来至关重要。

5.Changes in temperature can affect the calcium carbonate compensation depth 碳酸钙补偿深度, impacting coral reef health.

温度变化会影响calcium carbonate compensation depth 碳酸钙补偿深度,从而影响珊瑚礁的健康。

作文

The ocean is a vast and complex ecosystem that plays a crucial role in regulating the Earth's climate and supporting a diverse array of life forms. One of the important concepts in marine science is the calcium carbonate compensation depth, which refers to the depth in the ocean where the rate of calcium carbonate dissolution equals the rate of calcium carbonate accumulation. This depth is significant because it marks the boundary between the upper ocean, where calcium carbonate can accumulate on the seafloor, and the deeper ocean, where it tends to dissolve due to higher pressure and lower temperatures. Understanding the calcium carbonate compensation depth is essential for several reasons. Firstly, it helps scientists predict how changes in ocean chemistry, particularly those caused by climate change, might affect marine life. As atmospheric CO2 levels rise, more carbon dioxide is absorbed by the oceans, leading to ocean acidification. This process can impact organisms that rely on calcium carbonate for their shells and skeletons, such as corals and certain types of plankton. If the calcium carbonate compensation depth shifts due to these changes, it could have profound effects on marine ecosystems. Secondly, the calcium carbonate compensation depth is also vital for understanding the geological history of Earth. By studying sediment cores from the ocean floor, scientists can determine past levels of calcium carbonate production and dissolution, which in turn provides insights into historical climate conditions. These records are invaluable for predicting future climate scenarios and understanding how our planet's systems interact over time. Furthermore, the calcium carbonate compensation depth has implications for the carbon cycle. Calcium carbonate serves as a long-term carbon sink, meaning that it helps sequester carbon dioxide from the atmosphere. When marine organisms die, their calcium carbonate structures can eventually form sediments on the ocean floor, effectively locking away carbon for thousands to millions of years. Changes in the calcium carbonate compensation depth could influence this process, potentially affecting the global carbon cycle and climate regulation. In conclusion, the calcium carbonate compensation depth is a critical concept in marine science that influences not only the health of marine ecosystems but also the broader climate system. As we continue to face the challenges posed by climate change, understanding this depth and its implications will be essential for developing effective conservation strategies and mitigating the impacts of environmental change. Through research and education, we can better appreciate the delicate balance of oceanic processes and work towards a sustainable future for our planet.

海洋是一个广阔而复杂的生态系统,在调节地球气候和支持多样化生命形式方面发挥着至关重要的作用。在海洋科学中,一个重要的概念是碳酸钙补偿深度,它指的是海洋中碳酸钙溶解速率等于碳酸钙沉积速率的深度。这个深度具有重要意义,因为它标志着上层海洋(碳酸钙可以在海底沉积的地方)与深层海洋(由于压力更高和温度更低而倾向于溶解的地方)之间的边界。理解碳酸钙补偿深度对于几个原因至关重要。首先,它帮助科学家预测由于气候变化引起的海洋化学变化可能对海洋生物产生的影响。随着大气中二氧化碳水平的上升,更多的二氧化碳被海洋吸收,导致海洋酸化。这个过程可能会影响依赖碳酸钙构建壳体和骨架的生物,例如珊瑚和某些类型的浮游生物。如果碳酸钙补偿深度因这些变化而发生位移,可能会对海洋生态系统产生深远的影响。其次,碳酸钙补偿深度对于理解地球的地质历史也至关重要。通过研究来自海底的沉积物核心,科学家可以确定过去碳酸钙的生产和溶解水平,从而提供对历史气候条件的见解。这些记录对于预测未来气候情景和理解我们星球的系统如何相互作用至关重要。此外,碳酸钙补偿深度还对碳循环有影响。碳酸钙作为一个长期的碳汇,意味着它有助于将二氧化碳从大气中隔离。当海洋生物死亡时,它们的碳酸钙结构最终可以形成海底沉积物,有效地将碳锁定数千到数百万年。碳酸钙补偿深度的变化可能会影响这一过程,进而影响全球碳循环和气候调节。总之,碳酸钙补偿深度是海洋科学中的一个关键概念,不仅影响海洋生态系统的健康,还影响更广泛的气候系统。随着我们继续面临气候变化带来的挑战,理解这一深度及其影响对于制定有效的保护战略和减轻环境变化的影响至关重要。通过研究和教育,我们可以更好地理解海洋过程的微妙平衡,并为我们星球的可持续未来而努力。

相关单词

calcium

calcium详解:怎么读、什么意思、用法

depth

depth详解:怎么读、什么意思、用法