buik modulus

简明释义

1. 伐积弹性; 2. 伐积模量;

英英释义

Bulk modulus is a measure of a material's resistance to uniform compression, defined as the ratio of the infinitesimal pressure increase to the resulting decrease in volume.

体积模量是材料对均匀压缩的抵抗能力的度量,定义为微小压力增加与由此导致的体积减少的比率。

例句

1.Higher buik modulus 体积模量 values indicate that a material is less compressible.

较高的buik modulus体积模量值表明材料的可压缩性较低。

2.In this experiment, we will measure the buik modulus 体积模量 of various fluids.

在这个实验中,我们将测量各种流体的buik modulus体积模量

3.The buik modulus 体积模量 helps engineers design better structures by understanding material limits.

通过了解材料限制,buik modulus体积模量帮助工程师设计更好的结构。

4.The engineer calculated the buik modulus 体积模量 of the material to determine its compressibility.

工程师计算了材料的buik modulus体积模量以确定其可压缩性。

5.Understanding the buik modulus 体积模量 is crucial for predicting how materials behave under pressure.

理解buik modulus体积模量对预测材料在压力下的行为至关重要。

作文

The concept of bulk modulus is fundamental in understanding the mechanical properties of materials. In physics and engineering, bulk modulus is defined as a measure of a material's resistance to uniform compression. It quantifies how incompressible a substance is when subjected to external pressure. The higher the bulk modulus, the less compressible the material is, meaning it can withstand greater forces without changing its volume significantly.To illustrate this concept, let’s consider two different materials: rubber and steel. Rubber has a relatively low bulk modulus, which means it can be easily compressed when a force is applied. This property makes rubber an excellent choice for products that require flexibility, such as tires or cushioning materials. On the other hand, steel has a high bulk modulus, indicating that it is much more resistant to compression. This characteristic allows steel to be used in construction and manufacturing, where strength and stability are crucial.The mathematical expression for bulk modulus (K) is given by the formula:K = -V (dP/dV)where V is the original volume, dP is the change in pressure, and dV is the change in volume. This equation shows that bulk modulus is directly related to how much a material’s volume decreases under pressure. For instance, if a material experiences a significant increase in pressure but only a minor decrease in volume, it will have a high bulk modulus. Conversely, if the volume decreases substantially under the same pressure, the bulk modulus will be lower.Understanding bulk modulus is crucial for engineers and scientists when designing structures and selecting materials for various applications. For example, in the aerospace industry, materials must withstand extreme pressures during flight. Engineers rely on the bulk modulus to choose materials that will not deform significantly under these conditions, ensuring the safety and efficiency of aircraft.Additionally, the bulk modulus plays a vital role in geophysics, particularly in studying the Earth's interior. Seismologists analyze how seismic waves travel through different layers of the Earth, and the bulk modulus helps them understand the properties of these materials. By measuring how fast seismic waves propagate through the Earth, scientists can infer information about the composition and behavior of geological formations.In summary, the bulk modulus is a critical parameter in material science, engineering, and geophysics. It provides insights into how materials respond to pressure and informs decisions regarding material selection and structural design. As technology advances, the importance of understanding bulk modulus will continue to grow, especially in fields requiring innovative solutions to complex problems. Therefore, mastering the concept of bulk modulus is essential for anyone involved in materials research and application, paving the way for advancements in various industries.

“体积模量”这一概念在理解材料的机械性能时至关重要。在物理学和工程学中,体积模量被定义为材料对均匀压缩的抵抗能力的度量。它量化了当受到外部压力时,物质的不可压缩性。体积模量越高,材料的可压缩性就越低,这意味着它可以承受更大的力量而不会显著改变其体积。为了说明这一概念,让我们考虑两种不同的材料:橡胶和钢铁。橡胶的体积模量相对较低,这意味着在施加力量时它可以很容易地被压缩。这一特性使得橡胶成为需要灵活性的产品(如轮胎或缓冲材料)的优秀选择。另一方面,钢铁具有高体积模量,这表明它对压缩的抵抗力更强。这一特性使得钢铁能够用于建筑和制造业,在这些领域中,强度和稳定性至关重要。体积模量(K)的数学表达式如下:K = -V (dP/dV)其中V是原始体积,dP是压力变化,dV是体积变化。这个方程显示了体积模量与材料在压力下体积减少的程度之间的直接关系。例如,如果一种材料在经历显著的压力增加时,其体积仅略微减少,那么它将具有高体积模量。相反,如果在相同压力下体积大幅减少,则体积模量会较低。理解体积模量对工程师和科学家在设计结构和选择各种应用材料时至关重要。例如,在航空航天工业中,材料必须承受飞行过程中的极端压力。工程师依赖于体积模量来选择在这些条件下不会显著变形的材料,从而确保飞机的安全性和效率。此外,体积模量在地球物理学中也发挥着重要作用,特别是在研究地球内部时。地震学家分析地震波如何穿过地球的不同层次,而体积模量帮助他们理解这些材料的特性。通过测量地震波在地球中的传播速度,科学家可以推断出有关地质构造的成分和行为的信息。总之,体积模量是材料科学、工程学和地球物理学中的一个关键参数。它提供了对材料在压力下响应的洞察,并为材料选择和结构设计的决策提供依据。随着技术的进步,理解体积模量的重要性将继续增长,特别是在需要创新解决复杂问题的领域。因此,掌握体积模量的概念对于任何参与材料研究和应用的人来说都是至关重要的,为各个行业的进步铺平了道路。

相关单词

modulus

modulus详解:怎么读、什么意思、用法