Brinell hardness number
简明释义
1. 布氏硬度; 2. 布氏硬度数;
英英释义
例句
1.To ensure durability, the manufacturer tests the Brinell hardness number of the aluminum alloy.
为了确保耐用性,制造商测试铝合金的布氏硬度值。
2.The Brinell hardness number is crucial for determining the suitability of materials in high-stress applications.
在高应力应用中,布氏硬度值对确定材料的适用性至关重要。
3.A higher Brinell hardness number usually suggests better wear resistance for the material.
较高的布氏硬度值通常意味着材料具有更好的耐磨性。
4.Engineers often compare the Brinell hardness number of different metals before selecting the right material for their project.
工程师们在选择适合项目的材料之前,常常比较不同金属的布氏硬度值。
5.The steel used in this construction has a high Brinell hardness number, indicating its resistance to deformation.
这项工程中使用的钢材具有较高的布氏硬度值,表明其抗变形能力强。
作文
The field of materials science is vast and complex, encompassing various properties that define how materials behave under different conditions. One such property is hardness, which refers to a material's resistance to deformation, particularly permanent deformation, scratching, cutting, or abrasion. Among the various methods used to measure hardness, the Brinell hardness number (BHN) stands out as one of the most widely utilized techniques. The Brinell hardness number (布氏硬度值) provides an essential metric for engineers and manufacturers when selecting materials for specific applications.Developed by Swedish engineer Johan August Brinell in 1900, the Brinell hardness number test involves pressing a hard steel or carbide ball into the surface of a material under a specified load. The diameter of the indentation left in the material after the load is removed is measured, and the Brinell hardness number is calculated using the formula: BHN = 2P / (πD(D - √(D² - d²))), where P is the applied load in kilograms, D is the diameter of the ball in millimeters, and d is the diameter of the indentation in millimeters. This method is particularly effective for materials with coarse or uneven structures, such as castings and forgings.One of the advantages of the Brinell hardness number test is its ability to provide a single value that represents the hardness of a material across a relatively large area. This is especially beneficial when dealing with materials that may have variations in hardness due to manufacturing processes or material inconsistencies. By using a larger indenter, the Brinell hardness number can average out these discrepancies, giving a more representative value for the material’s overall hardness.However, there are limitations to the Brinell hardness number method. For instance, it is not suitable for very hard materials, as the ball may not create a measurable indentation. Additionally, the test can be time-consuming and requires careful preparation of the sample surface to ensure accurate results. Despite these challenges, the Brinell hardness number remains a vital tool in quality control and material selection processes.In practical applications, the Brinell hardness number is frequently used in industries such as automotive, aerospace, and construction, where material strength and durability are crucial. Engineers often refer to BHN values when specifying materials for components that will undergo significant wear and tear. For example, a high Brinell hardness number indicates that a material can withstand heavy loads and resist deformation, making it ideal for gears, bearings, and other mechanical parts.Moreover, the Brinell hardness number can also provide insights into the material’s microstructure. A higher BHN typically suggests a finer grain structure, which can enhance the material's performance characteristics. Conversely, a lower BHN might indicate a coarser structure, potentially leading to reduced wear resistance and longevity.In conclusion, the Brinell hardness number is an invaluable measurement in the field of materials science, offering a reliable assessment of material hardness. Its ease of use and ability to provide a comprehensive view of a material's hardness make it a preferred choice among engineers and manufacturers. Understanding the Brinell hardness number and its implications can significantly impact the selection and application of materials in various industries, ultimately contributing to the development of more durable and efficient products.
材料科学领域广泛而复杂,涵盖了定义材料在不同条件下表现的各种性质。其中一个重要的性质是硬度,它指的是材料抵抗变形,特别是永久变形、划伤、切割或磨损的能力。在测量硬度的各种方法中,布氏硬度值(BHN)作为最广泛使用的技术之一脱颖而出。布氏硬度值(Brinell hardness number)为工程师和制造商在选择特定应用材料时提供了重要指标。布氏硬度值测试由瑞典工程师约翰·奥古斯特·布氏于1900年开发,涉及将硬钢或碳化物球在规定负载下压入材料表面。卸载后,测量材料上留下的凹痕直径,并使用公式计算布氏硬度值:BHN = 2P / (πD(D - √(D² - d²))),其中P是施加的负载(以千克为单位),D是球的直径(以毫米为单位),d是凹痕的直径(以毫米为单位)。这种方法对于具有粗糙或不均匀结构的材料(如铸件和锻件)特别有效。布氏硬度值测试的一个优点是能够提供一个代表材料在相对较大区域内硬度的单一值。这在处理可能由于制造过程或材料不一致性而在硬度上存在差异的材料时尤其有利。通过使用较大的压头,布氏硬度值可以平均这些差异,从而为材料的整体硬度提供更具代表性的值。然而,布氏硬度值方法也有其局限性。例如,对于非常硬的材料,该方法可能不适用,因为球可能无法产生可测量的凹痕。此外,测试可能耗时,并且需要仔细准备样品表面以确保结果的准确性。尽管面临这些挑战,布氏硬度值仍然是质量控制和材料选择过程中至关重要的工具。在实际应用中,布氏硬度值常用于汽车、航空航天和建筑等行业,这些行业对材料的强度和耐用性要求很高。工程师通常在指定承受重大磨损的组件材料时参考BHN值。例如,高布氏硬度值表明材料能够承受重负荷并抵抗变形,使其成为齿轮、轴承和其他机械部件的理想选择。此外,布氏硬度值还可以提供材料微观结构的见解。较高的BHN通常表明较细的晶粒结构,这可以增强材料的性能特性。相反,较低的BHN可能表示较粗的结构,可能导致耐磨性和使用寿命降低。总之,布氏硬度值是材料科学领域中一项宝贵的测量,为材料硬度提供可靠评估。它的易用性以及提供全面的材料硬度视图的能力使其成为工程师和制造商的首选。理解布氏硬度值及其含义可以显著影响各种行业中材料的选择和应用,最终促进更耐用和高效产品的发展。
相关单词