Bravais-space lattice
简明释义
布拉维空间格子;
英英释义
例句
1.In solid-state physics, the concept of a Bravais-space lattice is fundamental for analyzing crystal structures.布拉维空间晶格
在固态物理中,布拉维空间晶格的概念是分析晶体结构的基础。
2.In crystallography, the arrangement of points in a repeating pattern is described by the concept of a Bravais-space lattice.布拉维空间晶格
在晶体学中,重复模式中点的排列由布拉维空间晶格的概念描述。
3.Different types of Bravais-space lattices exist, such as cubic, tetragonal, and hexagonal.布拉维空间晶格
存在不同类型的布拉维空间晶格,如立方、四方和六方。
4.The Bravais-space lattice helps researchers understand the symmetry and structure of crystalline materials.布拉维空间晶格
布拉维空间晶格帮助研究人员理解晶体材料的对称性和结构。
5.Understanding the Bravais-space lattice is crucial for predicting the properties of new materials.布拉维空间晶格
理解布拉维空间晶格对于预测新材料的性质至关重要。
作文
The concept of a Bravais-space lattice is fundamental in the field of crystallography and solid-state physics. It refers to an infinite array of discrete points that are arranged in a periodic pattern throughout space. Each point in this lattice represents the position of an identical environment, which is crucial for understanding the properties of crystalline materials. The Bravais-space lattice serves as a mathematical model that helps scientists visualize the spatial arrangement of atoms within a crystal structure.There are 14 distinct types of Bravais-space lattices, categorized based on their symmetry and the dimensions of the unit cell. These include cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic lattices, among others. Each type has unique characteristics that influence the physical properties of the material, such as its density, melting point, and electrical conductivity. For instance, the face-centered cubic lattice is known for its high packing efficiency, which contributes to the strength and ductility of metals like aluminum and copper.Understanding the Bravais-space lattice is crucial for materials science, as it allows researchers to predict how materials will behave under various conditions. By analyzing the lattice structure, scientists can infer properties such as thermal expansion, elasticity, and even optical characteristics. This knowledge is particularly valuable in the development of new materials with tailored properties for specific applications, such as semiconductors, superconductors, and nanomaterials.Moreover, the Bravais-space lattice concept extends beyond simple crystal structures. In complex materials, such as those found in biological systems or advanced ceramics, the principles of the Bravais-space lattice can still apply. Researchers often utilize computational methods to simulate these lattices, enabling them to explore the behavior of materials at the atomic level. This approach has led to significant advancements in fields such as drug design, where understanding the lattice structure of biomolecules can aid in the development of effective pharmaceuticals.In conclusion, the Bravais-space lattice is a vital concept in understanding the arrangement of atoms in crystalline materials. Its significance spans various scientific disciplines, from physics to chemistry and materials science. By mastering this concept, researchers can unlock new possibilities in material innovation and application. The study of Bravais-space lattices not only enhances our comprehension of existing materials but also paves the way for the discovery of novel substances with extraordinary properties. As technology continues to advance, the importance of understanding the Bravais-space lattice will only grow, making it an essential topic for future research and exploration.
“Bravais空间晶格”这一概念在晶体学和固态物理学领域中至关重要。它指的是在空间中以周期性模式排列的离散点的无限阵列。该晶格中的每个点代表一个相同环境的位置,这对于理解晶体材料的性质至关重要。“Bravais空间晶格”作为一种数学模型,帮助科学家可视化晶体结构中原子的空间排列。根据其对称性和单位胞的维度,存在14种不同类型的“Bravais空间晶格”。这些包括立方体、四方体、正交体、六方体、菱方体和单斜体晶格等。每种类型具有独特的特征,影响材料的物理性质,如密度、熔点和电导率。例如,面心立方晶格以其高堆积效率而闻名,这有助于铝和铜等金属的强度和延展性。理解“Bravais空间晶格”对于材料科学至关重要,因为它使研究人员能够预测材料在各种条件下的表现。通过分析晶格结构,科学家可以推断出热膨胀、弹性甚至光学特性等属性。这一知识在开发新材料时尤为宝贵,特别是针对特定应用而设计的半导体、超导体和纳米材料。此外,“Bravais空间晶格”概念超越了简单的晶体结构。在复杂材料中,例如生物系统或先进陶瓷中,“Bravais空间晶格”的原理仍然适用。研究人员通常利用计算方法来模拟这些晶格,使他们能够探索材料在原子层面的行为。这种方法在药物设计等领域取得了重大进展,其中理解生物分子的晶格结构可以帮助开发有效的药物。总之,“Bravais空间晶格”是理解晶体材料中原子排列的重要概念。它的意义跨越了物理学、化学和材料科学等多个科学学科。通过掌握这一概念,研究人员可以开启材料创新和应用的新可能性。“Bravais空间晶格”的研究不仅增强了我们对现有材料的理解,还为发现具有非凡特性的全新物质铺平了道路。随着技术的不断进步,理解“Bravais空间晶格”的重要性只会增加,使其成为未来研究和探索的一个重要主题。
相关单词