Bravais-Miller symbol
简明释义
布拉维—米勒符号;
英英释义
The Bravais-Miller symbol is a notation used in crystallography to describe the orientation of crystal planes and directions in a crystal lattice. | Bravais-Miller符号是在晶体学中用于描述晶体格子中晶面和方向的取向的一种符号表示法。 |
例句
1.Understanding the Bravais-Miller symbol is crucial for materials scientists working with crystallography.
理解布拉维-米勒符号对于从事晶体学的材料科学家至关重要。
2.The Bravais-Miller symbol helps in visualizing the orientation of crystal faces in three-dimensional space.
布拉维-米勒符号有助于在三维空间中可视化晶体面的取向。
3.When analyzing crystal planes, scientists often refer to the Bravais-Miller symbol for clarity.
在分析晶体平面时,科学家们通常引用布拉维-米勒符号以获得清晰度。
4.The crystal structure can be described using the Bravais-Miller symbol, which provides a concise way to represent lattice types.
晶体结构可以使用布拉维-米勒符号来描述,这提供了一种简洁的方式来表示晶格类型。
5.In mineralogy, the Bravais-Miller symbol is essential for identifying the symmetry of crystal forms.
在矿物学中,布拉维-米勒符号对于识别晶体形态的对称性至关重要。
作文
The study of crystallography has long fascinated scientists and researchers alike. One of the fundamental concepts in this field is the use of the Bravais-Miller symbol, which serves as a crucial tool for understanding crystal structures. The Bravais-Miller symbol combines two important aspects: the Bravais lattice, which describes the periodic arrangement of points in space, and Miller indices, which provide a way to denote the orientation of crystal planes. Together, they allow scientists to categorize and analyze various crystalline materials effectively.To grasp the importance of the Bravais-Miller symbol, it is essential to first understand its components. The Bravais lattices are classified into 14 distinct types, each representing a unique way in which atoms can be arranged in three-dimensional space. These lattices play a vital role in defining the symmetry and properties of crystals. On the other hand, Miller indices are a notation system used to specify the orientation of crystal faces or planes. By using a set of integers, Miller indices indicate the intercepts that a plane makes with the crystallographic axes.When combined, the Bravais-Miller symbol allows researchers to communicate complex information about crystal structures succinctly. For instance, in a cubic crystal system, the Bravais-Miller symbol could represent a specific plane within the crystal lattice, such as the (100) plane. This notation not only conveys the orientation but also implies certain physical properties, such as how the crystal will interact with light or how it will deform under stress.The significance of the Bravais-Miller symbol extends beyond mere classification; it has practical applications in various scientific fields. In materials science, for example, understanding the crystal structure of a material is paramount for predicting its mechanical, thermal, and electrical properties. By utilizing the Bravais-Miller symbol, scientists can design new materials with tailored properties for specific applications. Additionally, in the field of solid-state physics, the Bravais-Miller symbol helps researchers explore phenomena such as electron mobility and band structure, crucial for the development of semiconductors and other electronic devices.Moreover, the Bravais-Miller symbol aids in the identification of minerals and the study of geological formations. Geologists often rely on crystallographic data to understand the conditions under which minerals formed, their stability, and their potential uses. By interpreting the Bravais-Miller symbol, geologists can infer the environmental history of rock formations and make predictions about the location of valuable mineral deposits.In conclusion, the Bravais-Miller symbol is an indispensable part of crystallography that enhances our understanding of material properties and behaviors. Its ability to succinctly convey complex information about crystal structures makes it a powerful tool for scientists across various disciplines. As research continues to advance, the relevance of the Bravais-Miller symbol will undoubtedly grow, paving the way for new discoveries and innovations in materials science, geology, and beyond.
晶体学的研究长期以来吸引着科学家和研究人员的关注。在这个领域中,一个基本概念是使用Bravais-Miller符号,它作为理解晶体结构的重要工具。Bravais-Miller符号结合了两个重要方面:布拉维格子,它描述了空间中点的周期性排列,以及米勒指数,它提供了一种表示晶面取向的方法。两者结合在一起,使科学家能够有效地对各种晶体材料进行分类和分析。要理解Bravais-Miller符号的重要性,首先必须了解其组成部分。布拉维格子被分为14种不同类型,每种类型代表原子在三维空间中排列的独特方式。这些格子在定义晶体的对称性和性质方面起着至关重要的作用。另一方面,米勒指数是一种用于指定晶面或平面的取向的符号系统。通过使用一组整数,米勒指数指示一个平面与晶体轴的截距。当结合在一起时,Bravais-Miller符号使研究人员能够简明扼要地传达有关晶体结构的复杂信息。例如,在立方晶体系统中,Bravais-Miller符号可以表示晶格内的特定平面,例如(100)平面。这种符号不仅传达了取向,还暗示了某些物理特性,例如晶体如何与光相互作用或在应力下如何变形。Bravais-Miller符号的重要性不仅限于分类;它在各个科学领域都有实际应用。例如,在材料科学中,了解材料的晶体结构对于预测其机械、热和电性能至关重要。通过利用Bravais-Miller符号,科学家可以设计具有特定应用所需特性的新品材料。此外,在固态物理学领域,Bravais-Miller符号帮助研究人员探索电子迁移率和能带结构等现象,这对半导体和其他电子设备的发展至关重要。此外,Bravais-Miller符号有助于矿物的识别和地质构造的研究。地质学家通常依赖晶体学数据来理解矿物形成的条件、稳定性及其潜在用途。通过解读Bravais-Miller符号,地质学家可以推断岩石构造的环境历史,并对珍贵矿藏的分布做出预测。总之,Bravais-Miller符号是晶体学中不可或缺的一部分,增强了我们对材料特性和行为的理解。它能够简洁地传达有关晶体结构的复杂信息,使其成为各个学科科学家的强大工具。随着研究的不断进展,Bravais-Miller符号的相关性无疑将会增长,为材料科学、地质学等领域的新发现和创新铺平道路。
相关单词