bounding point
简明释义
粘合点;
英英释义
A bounding point refers to a specific location or value that defines the limits or extent of a particular area, range, or set of data. | 边界点是指定义特定区域、范围或数据集的限制或范围的特定位置或值。 |
例句
1.During the simulation, we set a bounding point 界限点 to prevent unrealistic outcomes.
在模拟过程中,我们设定了一个bounding point 界限点以防止不现实的结果。
2.The bounding point 界限点 for this experiment is crucial for maintaining accuracy.
这个实验的bounding point 界限点对于保持准确性至关重要。
3.The project's timeline has a bounding point 界限点 to ensure timely delivery.
项目的时间表有一个bounding point 界限点以确保按时交付。
4.The software requires a bounding point 界限点 to limit the data input range.
该软件需要一个bounding point 界限点来限制数据输入范围。
5.In our analysis, we identified a bounding point 界限点 that defines the maximum allowable error.
在我们的分析中,我们确定了一个bounding point 界限点,它定义了最大允许误差。
作文
In mathematics and computer science, the concept of a bounding point plays a crucial role in defining the limits of a particular set or function. A bounding point can be understood as a point that serves as a boundary or limit for a given domain. For example, in a geometric context, if we consider a circle, the center of the circle is a bounding point that determines the extent to which the circle expands. In this sense, the bounding point is essential for understanding the properties of shapes and their dimensions.Moreover, in optimization problems, a bounding point can help identify the feasible region where solutions exist. When dealing with constraints, the bounding point indicates the maximum or minimum values that variables can take. This is particularly important in linear programming, where finding the optimal solution often requires determining these bounding points to maximize or minimize an objective function.In the realm of data analysis, the concept of a bounding point can also be applied to statistical distributions. For instance, when analyzing data sets, identifying bounding points helps in establishing the range of values that data can take. This is vital for creating histograms or box plots, where the bounding points mark the limits of the data distribution. By recognizing these points, analysts can better understand the spread and central tendency of the data, leading to more informed conclusions.Furthermore, in computer graphics, bounding points are used to define the visible area of a scene. When rendering images, it is important to know the bounding points of objects in a 3D space to optimize rendering processes. By calculating the bounding points, graphic designers can determine which parts of the scene need to be drawn and which can be ignored, thus improving performance and efficiency.In conclusion, the term bounding point encompasses a variety of meanings across different fields, all relating to the idea of limits and boundaries. Understanding bounding points is vital not only in mathematics and computer science but also in practical applications such as data analysis and computer graphics. Whether it is defining the limits of a geometric shape, identifying feasible regions in optimization, analyzing statistical data, or optimizing graphic rendering, bounding points serve as fundamental concepts that enhance our comprehension and functionality within these domains. As we continue to explore the intricacies of various fields, recognizing the significance of bounding points will undoubtedly provide deeper insights and foster greater innovation.
在数学和计算机科学中,‘bounding point’的概念在定义特定集合或函数的界限方面起着至关重要的作用。‘bounding point’可以理解为一个作为给定领域边界或限制的点。例如,在几何上下文中,如果我们考虑一个圆,圆心就是一个‘bounding point’,它决定了圆的扩展范围。从这个意义上说,‘bounding point’对于理解形状及其维度的性质至关重要。此外,在优化问题中,‘bounding point’可以帮助识别存在解的可行区域。在处理约束时,‘bounding point’表示变量可以取的最大值或最小值。这在线性规划中特别重要,因为找到最优解通常需要确定这些‘bounding points’以最大化或最小化目标函数。在数据分析领域,‘bounding point’的概念也可以应用于统计分布。例如,在分析数据集时,识别‘bounding points’有助于建立数据可以取值的范围。这对于创建直方图或箱线图至关重要,其中‘bounding points’标记了数据分布的界限。通过识别这些点,分析师可以更好地理解数据的分散程度和集中趋势,从而得出更明智的结论。此外,在计算机图形学中,‘bounding points’用于定义场景的可视区域。在渲染图像时,了解3D空间中对象的‘bounding points’是优化渲染过程的重要因素。通过计算‘bounding points’,图形设计师可以确定场景中哪些部分需要被绘制,哪些可以被忽略,从而提高性能和效率。总之,‘bounding point’一词在不同领域中包含多种含义,都与界限和边界的概念相关。理解‘bounding points’不仅在数学和计算机科学中至关重要,而且在数据分析和计算机图形学等实际应用中也是如此。无论是定义几何形状的界限、识别优化中的可行区域、分析统计数据,还是优化图形渲染,‘bounding points’都是增强我们在这些领域内理解和功能的基础概念。随着我们继续探索各个领域的复杂性,认识到‘bounding points’的重要性无疑会提供更深刻的见解,并促进更大的创新。