trisector
简明释义
英[traɪˈsektə(r)]美[traɪˈsektər]
n. 三等分器;三分;三截
英英释义
A trisector is a line or segment that divides an angle into three equal parts. | 三分线是将一个角度分成三个相等部分的线或线段。 |
单词用法
角的三分线 | |
三角形的三分线 | |
画一条三分线 | |
构造一条三分线 |
同义词
二分 | 这个平分线将角度分成两个相等的部分。 | ||
三分 | In geometry, a trisection of an angle involves dividing it into three equal angles. | 在几何学中,角的三分涉及将其分成三个相等的角。 |
反义词
二分 | The angle was divided into two equal parts through bisection. | 这个角通过二分被分成两个相等的部分。 | |
单分 | In geometry, a monosector refers to a single division of an angle. | 在几何中,单分指的是一个角的单一划分。 |
例句
1.The problem that the primary air leakage of trisector AH is large arises some domestic customers attention.
三分仓空气预热器一次风泄漏量偏大,引起国内部分用户的反响。
2.The problem that the primary air leakage of trisector AH is large arises some domestic customers attention.
三分仓空气预热器一次风泄漏量偏大,引起国内部分用户的反响。
3.In geometry class, we learned how to draw a trisector 三分线 that divides an angle into three equal parts.
在几何课上,我们学习了如何绘制一条trisector 三分线,将一个角度分成三个相等的部分。
4.To find the trisector 三分线 of an angle, you can use a compass and straightedge.
要找到一个角的trisector 三分线,你可以使用圆规和直尺。
5.During the math competition, I had to calculate the angles formed by the trisector 三分线 of a triangle.
在数学竞赛中,我必须计算由三角形的trisector 三分线形成的角度。
6.The trisector 三分线 can be useful in various fields such as engineering and architecture.
在工程和建筑等多个领域,trisector 三分线非常有用。
7.The architect used a trisector 三分线 to create a symmetrical design in the building's layout.
建筑师使用trisector 三分线来创建建筑布局中的对称设计。
作文
In the realm of geometry, understanding various terms is crucial for grasping complex concepts. One such term is trisector, which refers to a line that divides an angle into three equal parts. This concept is not only fundamental in geometric studies but also has practical applications in fields such as engineering and architecture. To illustrate the significance of a trisector, let’s consider a scenario where an architect is designing a triangular structure. In order to maintain symmetry and balance, the architect may utilize the concept of a trisector to ensure that the angles of the triangle are divided equally. By doing so, the architect can create a visually appealing design that is structurally sound.The trisector plays a vital role in various geometric constructions. For instance, when constructing a triangle, it is sometimes necessary to find specific points within the triangle that relate to its angles. By drawing the trisector, one can easily determine these points, which can then be used for further calculations or constructions. This method of dividing angles is not limited to triangles; it can also be applied to other polygons, enhancing the precision of geometric designs.Moreover, the concept of a trisector extends beyond mere geometric shapes. In mathematics, it can be applied to functions and graphs, where the division of angles can lead to insights about the behavior of a function. For example, when analyzing the graph of a trigonometric function, one might use the idea of a trisector to understand the angles at which the function behaves in a certain way. This can be particularly useful in calculus when determining the limits and continuity of functions.In addition to its mathematical implications, the trisector has real-world applications in navigation and surveying. Surveyors often need to divide angles accurately to map out land or create building plans. By employing trisectors, they can ensure that their measurements are precise, leading to more accurate results. This accuracy is essential in construction projects, where even the slightest error can result in significant issues down the line.Furthermore, the use of trisectors can also be seen in art and design. Artists often rely on geometric principles to create aesthetically pleasing compositions. By understanding how to divide angles using trisectors, artists can achieve balance and harmony in their work. This technique allows them to guide the viewer's eye through the artwork, creating a sense of movement and flow.In conclusion, the term trisector represents more than just a geometric concept; it embodies a tool that can be utilized across various disciplines. Whether in mathematics, architecture, surveying, or art, the ability to divide angles into three equal parts opens up a world of possibilities. As we continue to explore the intricacies of geometry and its applications, understanding terms like trisector becomes increasingly important. It enhances our comprehension of the subject and enables us to apply these concepts in practical scenarios, ultimately enriching our knowledge and skills in both academic and professional settings.
在几何学领域,理解各种术语对于掌握复杂概念至关重要。其中一个术语是trisector,它指的是将一个角分成三个相等部分的线。这一概念不仅在几何研究中是基础,而且在工程和建筑等领域也有实际应用。为了说明trisector的重要性,让我们考虑一个建筑师设计三角形结构的场景。为了保持对称和平衡,建筑师可能会利用trisector的概念来确保三角形的角度被均匀划分。通过这样做,建筑师可以创造出既美观又结构合理的设计。trisector在各种几何构造中发挥着重要作用。例如,在构造三角形时,有时需要找到与其角度相关的特定点。通过绘制trisector,人们可以轻松确定这些点,然后用于进一步的计算或构造。这种划分角度的方法不仅限于三角形;它还可以应用于其他多边形,增强几何设计的精确性。此外,trisector的概念超越了简单的几何形状。在数学中,它可以应用于函数和图形,其中角度的划分可以揭示函数行为的见解。例如,在分析三角函数的图形时,人们可能会使用trisector的概念来理解函数以某种方式表现的角度。这在微积分中尤其有用,当确定函数的极限和连续性时。除了其数学含义外,trisector在导航和测量中也有实际应用。测量师经常需要准确地划分角度,以绘制土地地图或创建建筑计划。通过采用trisectors,他们可以确保测量的精确,从而导致更准确的结果。这种准确性在建筑项目中至关重要,因为即使是最微小的错误也可能导致后续重大问题。此外,trisectors的使用在艺术和设计中也能看到。艺术家通常依赖几何原理来创造美学上令人愉悦的作品。通过理解如何使用trisectors划分角度,艺术家可以在其作品中实现平衡与和谐。这一技术使他们能够引导观众的目光穿过艺术作品,创造出一种运动和流动感。总之,术语trisector不仅仅代表一个几何概念;它体现了一种可以跨多个学科使用的工具。无论是在数学、建筑、测量还是艺术中,将角度划分为三个相等部分的能力开启了无限的可能性。随着我们继续探索几何及其应用的复杂性,理解像trisector这样的术语变得越来越重要。它增强了我们对这一主题的理解,使我们能够在实际场景中应用这些概念,最终丰富了我们在学术和专业环境中的知识和技能。