biolimiting element

简明释义

生物限制元素;

英英释义

A biolimiting element is a nutrient or resource that is in limited supply and restricts the growth, reproduction, or survival of organisms in an ecosystem.

生物限制元素是指在生态系统中供应有限的营养物质或资源,它限制了生物的生长、繁殖或生存。

例句

1.In marine ecosystems, nitrogen is often a biolimiting element 生物限制元素 that affects the growth of phytoplankton.

在海洋生态系统中,氮通常是一个生物限制元素 biolimiting element,影响浮游植物的生长。

2.In agricultural practices, understanding biolimiting elements 生物限制元素 helps optimize fertilizer use.

在农业实践中,了解生物限制元素 biolimiting elements有助于优化肥料使用。

3.Carbon dioxide levels can also be a biolimiting element 生物限制元素 in certain environments.

二氧化碳水平在某些环境中也可以是一个生物限制元素 biolimiting element

4.When analyzing soil health, one must consider the biolimiting elements 生物限制元素 that restrict plant growth.

在分析土壤健康时,必须考虑限制植物生长的生物限制元素 biolimiting elements

5.The study revealed that phosphorus acts as a biolimiting element 生物限制元素 in freshwater lakes.

研究表明,磷在淡水湖泊中充当生物限制元素 biolimiting element

作文

In the study of ecology and environmental science, the concept of a biolimiting element is crucial for understanding how ecosystems function and maintain balance. A biolimiting element refers to a nutrient or resource that limits the growth and productivity of organisms in an ecosystem. This concept is particularly important when examining aquatic environments, where elements such as nitrogen and phosphorus play significant roles. When these nutrients are abundant, they can lead to explosive growth of algae and other aquatic plants, a phenomenon known as eutrophication. However, if these nutrients are scarce, the growth of these organisms is limited, showcasing the importance of biolimiting elements in regulating population dynamics and biodiversity.One of the most well-known examples of a biolimiting element is nitrogen in freshwater ecosystems. Nitrogen is essential for the synthesis of amino acids and nucleic acids, which are vital for all forms of life. In many freshwater systems, nitrogen can become a limiting factor, particularly in oligotrophic lakes where nutrient levels are low. In such environments, the availability of nitrogen directly influences the growth rates of phytoplankton, which are the foundation of the aquatic food web. If nitrogen is in short supply, it can lead to reduced productivity, affecting not only the primary producers but also the entire ecosystem, including fish and other higher trophic levels.Similarly, phosphorus is another critical biolimiting element in both freshwater and marine ecosystems. Phosphorus is a key component of ATP, DNA, and RNA, making it indispensable for energy transfer and genetic information. In many cases, phosphorus availability can limit the growth of plant life in aquatic environments. For instance, in some coastal marine ecosystems, phosphorus is often the limiting nutrient, controlling the productivity of phytoplankton and thereby influencing the entire marine food chain. The interplay between nitrogen and phosphorus as biolimiting elements is a central theme in nutrient cycling studies, as their ratios can significantly affect ecosystem health and resilience.Understanding the role of biolimiting elements is not only important for ecological theory but also has practical implications for environmental management and conservation. Human activities, such as agriculture and urban development, can significantly alter the availability of these nutrients through runoff and pollution. For example, excessive use of fertilizers can lead to nutrient loading in water bodies, resulting in harmful algal blooms that disrupt aquatic ecosystems and pose risks to human health. Therefore, managing the input of biolimiting elements into ecosystems is crucial for maintaining ecological balance and preventing degradation.In conclusion, the concept of a biolimiting element is essential for understanding the dynamics of ecosystems and the factors that influence biodiversity. By recognizing the importance of nutrients like nitrogen and phosphorus, we can better appreciate the delicate balance that sustains life on Earth. Moreover, this understanding can guide us in making informed decisions about resource management and conservation efforts, ensuring that we protect our natural environments for future generations. The study of biolimiting elements thus serves as a reminder of the interconnectedness of life and the importance of maintaining the health of our ecosystems.

在生态学和环境科学的研究中,生物限制元素的概念对于理解生态系统如何运作以及维持平衡至关重要。生物限制元素是指在生态系统中限制生物生长和生产力的营养物质或资源。这个概念在研究水生环境时尤其重要,因为氮和磷等元素发挥着重要作用。当这些营养物质丰富时,它们会导致藻类和其他水生植物的爆发性生长,这种现象被称为富营养化。然而,如果这些营养物质稀缺,这些生物的生长就会受到限制,从而展示了生物限制元素在调节种群动态和生物多样性方面的重要性。氮是淡水生态系统中最著名的生物限制元素之一。氮是合成氨基酸和核酸所必需的,对于所有生命形式至关重要。在许多淡水系统中,氮可能成为一个限制因素,特别是在营养水平较低的贫营养湖泊中。在这样的环境中,氮的可用性直接影响浮游植物的生长速率,而浮游植物是水生食物网的基础。如果氮供应不足,就会导致生产力下降,影响不仅是初级生产者,还有整个生态系统,包括鱼类和其他更高营养级的生物。同样,磷也是淡水和海洋生态系统中的一个关键生物限制元素。磷是ATP、DNA和RNA的关键成分,使其对能量转移和遗传信息不可或缺。在许多情况下,磷的可用性可以限制水生环境中植物生命的生长。例如,在一些沿海海洋生态系统中,磷通常是限制营养物质,控制浮游植物的生产力,从而影响整个海洋食物链。氮和磷作为生物限制元素之间的相互作用是营养循环研究的中心主题,因为它们的比例可以显著影响生态系统的健康和韧性。理解生物限制元素的作用不仅对生态理论重要,而且对环境管理和保护也具有实际意义。人类活动,如农业和城市发展,可以通过径流和污染显著改变这些营养物质的可用性。例如,过度使用肥料可能导致水体中的营养物质负荷,从而导致有害的藻类繁殖,破坏水生生态系统,并对人类健康构成风险。因此,管理进入生态系统的生物限制元素的输入对于维持生态平衡和防止退化至关重要。总之,生物限制元素的概念对于理解生态系统的动态及其影响生物多样性的因素至关重要。通过认识到氮和磷等营养物质的重要性,我们可以更好地欣赏维持地球生命的微妙平衡。此外,这种理解可以指导我们在资源管理和保护工作中做出明智的决策,以确保我们为后代保护自然环境。因此,研究生物限制元素提醒我们生命的相互联系,以及维护生态系统健康的重要性。