biogeochemical cycle

简明释义

1. 生物地化旋回; 2. 生物地球化学旋回;

英英释义

A biogeochemical cycle is the movement of elements and compounds through biological, geological, and chemical processes in the environment.

生物地球化学循环是元素和化合物通过环境中的生物、地质和化学过程的运动。

例句

1.Human activities have significantly altered the biogeochemical cycle 生物地球化学循环, leading to environmental issues.

人类活动显著改变了生物地球化学循环,导致环境问题。

2.Carbon is a key element in the biogeochemical cycle 生物地球化学循环, affecting climate change and ecosystem health.

碳是生物地球化学循环中的一个关键元素,影响气候变化和生态系统健康。

3.Understanding the biogeochemical cycle 生物地球化学循环 of water is essential for managing freshwater resources.

理解水的生物地球化学循环对于管理淡水资源至关重要。

4.The nitrogen biogeochemical cycle 生物地球化学循环 plays a crucial role in soil fertility.

氮的生物地球化学循环在土壤肥力中起着至关重要的作用。

5.The study of the biogeochemical cycle 生物地球化学循环 helps us understand how nutrients move through ecosystems.

生物地球化学循环的研究帮助我们理解养分如何在生态系统中流动。

作文

The Earth is a complex system where life thrives, and one of the key processes that sustain this life is the biogeochemical cycle. This term refers to the natural circulation of elements and compounds between living organisms and the environment. Understanding the biogeochemical cycle is crucial for comprehending how ecosystems function and how various factors influence them.At its core, the biogeochemical cycle encompasses the movement of biological, geological, and chemical components through different spheres of the Earth, including the atmosphere, hydrosphere, lithosphere, and biosphere. For instance, the carbon cycle is a well-known example of a biogeochemical cycle. Carbon is an essential element for life, and its cycle involves processes such as photosynthesis, respiration, decomposition, and combustion. Plants absorb carbon dioxide from the atmosphere during photosynthesis, converting it into organic matter. When animals consume plants, they incorporate this carbon into their bodies. Eventually, when plants and animals die, decomposers break down their organic matter, releasing carbon back into the atmosphere or soil, thus completing the cycle.Another important biogeochemical cycle is the nitrogen cycle. Nitrogen is a critical nutrient for all living organisms, as it is a fundamental component of amino acids and nucleic acids. The nitrogen cycle involves several steps, including nitrogen fixation, nitrification, assimilation, ammonification, and denitrification. Certain bacteria in the soil can convert atmospheric nitrogen into forms that plants can use, such as ammonia. Animals then obtain nitrogen by consuming plants, and when they excrete waste or die, nitrogen is returned to the soil, where it can be reused by plants, continuing the cycle.The understanding of biogeochemical cycles is vital for environmental science and ecology. Human activities, such as deforestation, burning fossil fuels, and industrial agriculture, significantly impact these cycles. For example, the excessive use of fertilizers can lead to nutrient runoff, causing algal blooms in water bodies, which disrupts aquatic ecosystems. Similarly, the burning of fossil fuels releases large amounts of carbon dioxide, contributing to climate change and altering the natural biogeochemical cycles of carbon.Preserving the balance of these cycles is essential for maintaining healthy ecosystems. Conservation efforts, sustainable agricultural practices, and reducing greenhouse gas emissions are all strategies aimed at protecting the integrity of biogeochemical cycles. By understanding these processes, we can better appreciate the interconnectedness of life on Earth and the importance of preserving our planet's natural systems.In conclusion, the biogeochemical cycle is a fundamental concept in understanding how life interacts with the environment. It highlights the intricate relationships between organisms and their surroundings, emphasizing the importance of maintaining ecological balance. As we face environmental challenges, recognizing the significance of biogeochemical cycles will be crucial in developing effective strategies for sustainability and conservation.

地球是一个复杂的系统,生命在这里繁荣,而支撑这种生命的关键过程之一就是生物地球化学循环。这个术语指的是元素和化合物在生物体与环境之间的自然循环。理解生物地球化学循环对于理解生态系统如何运作以及各种因素如何影响它们至关重要。从根本上说,生物地球化学循环包括生物、地质和化学成分在地球不同圈层之间的运动,包括大气圈、水圈、岩石圈和生物圈。例如,碳循环是一个众所周知的生物地球化学循环的例子。碳是生命的基本元素,其循环涉及光合作用、呼吸作用、分解和燃烧等过程。植物在光合作用过程中从大气中吸收二氧化碳,将其转化为有机物。当动物食用植物时,它们将这种碳纳入自己的身体。最终,当植物和动物死亡时,分解者会分解它们的有机物,将碳释放回大气或土壤,从而完成循环。另一个重要的生物地球化学循环是氮循环。氮是所有生物体所需的重要营养素,因为它是氨基酸和核酸的基本组成部分。氮循环包括几个步骤,包括氮固定、硝化、同化、铵化和反硝化。土壤中的某些细菌可以将大气中的氮转化为植物可以使用的形式,例如氨。动物通过食用植物获得氮,当它们排泄废物或死亡时,氮会返回土壤,供植物再次利用,继续循环。理解生物地球化学循环对环境科学和生态学至关重要。人类活动,如砍伐森林、燃烧化石燃料和工业农业,对这些循环产生了重大影响。例如,过量使用肥料可能导致养分流失,导致水体中的藻类暴发,破坏水生生态系统。同样,燃烧化石燃料释放大量二氧化碳,导致气候变化并改变碳的自然生物地球化学循环。保持这些循环的平衡对于维持健康的生态系统至关重要。保护工作、可持续农业实践和减少温室气体排放都是旨在保护生物地球化学循环完整性的策略。通过理解这些过程,我们可以更好地欣赏地球上生命的相互联系及保护我们星球自然系统的重要性。总之,生物地球化学循环是理解生命如何与环境互动的基本概念。它突显了生物体与其周围环境之间错综复杂的关系,强调了维护生态平衡的重要性。面对环境挑战时,认识到生物地球化学循环的重要性将对制定有效的可持续发展和保护策略至关重要。

相关单词

cycle

cycle详解:怎么读、什么意思、用法