base reservoir temperature
简明释义
热储的基底温度;
英英释义
例句
1.The base reservoir temperature 基础储层温度 affects the viscosity of the oil in the reservoir.
在储层中的油的粘度受基础储层温度 base reservoir temperature的影响。
2.Understanding the base reservoir temperature 基础储层温度 is crucial for predicting reservoir behavior during production.
了解基础储层温度 base reservoir temperature对于预测生产期间的储层行为至关重要。
3.The simulation model requires an accurate base reservoir temperature 基础储层温度 input to predict future performance.
模拟模型需要准确的基础储层温度 base reservoir temperature输入以预测未来表现。
4.The engineers calculated the base reservoir temperature 基础储层温度 to optimize the extraction process.
工程师们计算了基础储层温度 base reservoir temperature以优化提取过程。
5.We need to monitor the base reservoir temperature 基础储层温度 to ensure optimal recovery rates.
我们需要监测基础储层温度 base reservoir temperature以确保最佳的采收率。
作文
In the field of geothermal energy and reservoir engineering, understanding the concept of base reservoir temperature is crucial for assessing the potential of geothermal resources. The term base reservoir temperature refers to the initial or average temperature of a geothermal reservoir before any production or injection activities take place. This temperature plays a significant role in determining the efficiency and sustainability of geothermal systems. Geothermal energy is derived from the heat stored beneath the Earth's surface, and it is an essential renewable energy source. When exploring geothermal reservoirs, engineers and scientists need to evaluate various parameters, including the base reservoir temperature, to make informed decisions regarding resource extraction. A higher base reservoir temperature typically indicates a more productive reservoir, as it suggests that there is a substantial amount of thermal energy available for conversion into electricity or direct heating applications.Moreover, the base reservoir temperature can influence the design of geothermal power plants. For instance, if a reservoir has a high base reservoir temperature, it may allow for the use of more efficient power generation technologies, such as binary cycle plants, which can operate effectively at lower temperatures. Conversely, a lower base reservoir temperature might necessitate the implementation of enhanced geothermal systems (EGS) or other advanced techniques to extract heat effectively.Understanding the base reservoir temperature also aids in predicting the long-term behavior of geothermal reservoirs. Over time, the temperature within a reservoir can change due to various factors, including production rates, reinjection practices, and natural geothermal gradients. By establishing a clear baseline through the base reservoir temperature, engineers can monitor changes and adjust their strategies accordingly to maintain the reservoir's productivity.Furthermore, the base reservoir temperature is not only important for energy production but also for environmental considerations. Geothermal systems have a relatively low environmental impact compared to fossil fuels, but it is still essential to manage the thermal and chemical characteristics of the extracted fluids. By understanding the base reservoir temperature, operators can implement measures to minimize any adverse effects on the surrounding ecosystem, ensuring that geothermal energy remains a sustainable and environmentally friendly option.In conclusion, the base reservoir temperature is a fundamental aspect of geothermal energy exploration and utilization. It serves as a baseline for evaluating the potential and sustainability of geothermal resources, influencing the design of power plants and guiding operational strategies. As the world increasingly turns towards renewable energy sources, comprehending the significance of the base reservoir temperature will be vital for maximizing the benefits of geothermal energy while minimizing its environmental footprint.
在地热能源和储层工程领域,理解“基准储层温度”的概念对于评估地热资源的潜力至关重要。术语“基准储层温度”指的是在任何生产或注入活动发生之前,地热储层的初始或平均温度。这个温度在确定地热系统的效率和可持续性方面发挥着重要作用。地热能源来源于地球表面下储存的热量,是一种重要的可再生能源。在探索地热储层时,工程师和科学家需要评估各种参数,包括“基准储层温度”,以便做出明智的资源开采决策。较高的“基准储层温度”通常意味着储层更具生产能力,因为它表明有大量的热能可用于转化为电力或直接供热应用。此外,“基准储层温度”可以影响地热发电厂的设计。例如,如果一个储层具有较高的“基准储层温度”,则可能允许使用更高效的发电技术,例如二元循环发电厂,这些技术可以在较低的温度下有效运行。相反,较低的“基准储层温度”可能需要实施增强型地热系统(EGS)或其他先进技术,以有效提取热量。理解“基准储层温度”还有助于预测地热储层的长期行为。随着时间的推移,由于生产率、再注入实践和自然地热梯度等各种因素,储层内的温度可能会发生变化。通过建立“基准储层温度”的明确基线,工程师可以监测变化并相应调整策略,以维持储层的生产能力。此外,“基准储层温度”不仅对能源生产重要,而且对环境考虑也至关重要。地热系统与化石燃料相比,环境影响相对较低,但仍然必须管理提取流体的热特性和化学特性。通过了解“基准储层温度”,操作人员可以实施措施,以尽量减少对周围生态系统的不利影响,确保地热能源仍然是一种可持续和环保的选择。总之,“基准储层温度”是地热能源探索和利用的基本方面。它作为评估地热资源潜力和可持续性的基准,影响发电厂的设计,并指导运营策略。随着世界越来越多地转向可再生能源,理解“基准储层温度”的重要性将对最大化地热能源的好处并最小化其环境足迹至关重要。
相关单词