base 10 logarithm

简明释义

常用对数;

英英释义

A base 10 logarithm is the exponent to which the number 10 must be raised to produce a given number.

以10为底的对数是将10提升到某个指数以产生给定数字所需的指数。

例句

1.To convert a number into its logarithmic form, you can apply the base 10 logarithm 以10为底的对数.

要将一个数字转换为对数形式,可以应用 base 10 logarithm 以10为底的对数

2.In finance, the base 10 logarithm 以10为底的对数 helps determine the time it takes for an investment to grow exponentially.

在金融中,base 10 logarithm 以10为底的对数 有助于确定投资增长到指数所需的时间。

3.The base 10 logarithm 以10为底的对数 is commonly used in scientific calculations to simplify large numbers.

在科学计算中,base 10 logarithm 以10为底的对数 常用于简化大数字。

4.The formula for calculating pH in chemistry involves the base 10 logarithm 以10为底的对数 of hydrogen ion concentration.

化学中计算pH值的公式涉及氢离子浓度的 base 10 logarithm 以10为底的对数

5.To solve for the exponent in the equation, we can use the base 10 logarithm 以10为底的对数 of both sides.

为了求解这个方程中的指数,我们可以对两边取 base 10 logarithm 以10为底的对数

作文

The concept of logarithms is fundamental in mathematics, particularly in the field of algebra and calculus. Among the various types of logarithms, the base 10 logarithm is one of the most widely used, especially in scientific calculations and data analysis. The base 10 logarithm, also known as the common logarithm, is defined as the power to which the number 10 must be raised to obtain a given number. For example, if we take the base 10 logarithm of 100, we find that it equals 2 because 10 raised to the power of 2 equals 100. This simple yet powerful concept allows us to transform multiplicative relationships into additive ones, making complex calculations more manageable.Understanding the base 10 logarithm is crucial for various applications in science and engineering. In fields such as acoustics, the intensity of sound is measured in decibels, which are based on the base 10 logarithm. A sound that is 10 times more intense than a reference sound is said to be 10 decibels louder. This logarithmic scale helps us comprehend the vast range of sound intensities in a more digestible format. Similarly, in finance, the base 10 logarithm can be used to understand exponential growth, such as compound interest, where money grows at a rate proportional to its current value.Moreover, the base 10 logarithm plays a significant role in computer science, particularly in algorithms and data structures. Many algorithms' complexity can be expressed using logarithmic terms. For instance, binary search, a common searching algorithm, operates in O(log n) time, where n is the number of elements in the dataset. Here, the logarithm base is often assumed to be 2, but understanding the base 10 logarithm is still beneficial when comparing the efficiency of different algorithms.In addition to its practical applications, the base 10 logarithm also has theoretical importance in mathematics. It serves as a bridge between exponential functions and polynomial functions, providing a means to solve equations involving exponentials. The properties of logarithms, including the product, quotient, and power rules, allow mathematicians to manipulate equations more easily. For instance, the property log(a * b) = log(a) + log(b) shows how multiplication can be converted into addition, simplifying complex calculations.While the base 10 logarithm is immensely useful, it is important to note that other bases exist, such as the natural logarithm (base e) and binary logarithm (base 2). Each base has its specific applications and contexts where it is most effective. However, the base 10 logarithm remains a cornerstone in education, often introduced in high school mathematics curricula as students learn about exponential functions and their inverses.In conclusion, the base 10 logarithm is a powerful mathematical tool that facilitates understanding and solving problems across various disciplines. Its ability to simplify complex relationships and provide insights into exponential growth makes it an essential concept in both academic and practical applications. As we continue to encounter logarithmic relationships in our daily lives, a solid grasp of the base 10 logarithm will undoubtedly enhance our analytical skills and problem-solving abilities.

对数的概念在数学中是基础性的,特别是在代数和微积分领域。在各种类型的对数中,以10为底的对数是最广泛使用的,尤其是在科学计算和数据分析中。以10为底的对数,也称为常用对数,被定义为10必须被提升到的幂,以获得给定的数字。例如,如果我们取100的以10为底的对数,我们发现它等于2,因为10的2次方等于100。这个简单而强大的概念使我们能够将乘法关系转化为加法关系,从而使复杂的计算变得更易管理。理解以10为底的对数对于科学和工程中的各种应用至关重要。在声学等领域,声音的强度以分贝为单位进行测量,这基于以10为底的对数。比参考声音强10倍的声音被认为响10分贝。这种对数尺度帮助我们以更易于消化的格式理解声音强度的巨大范围。同样,在金融领域,以10为底的对数可以用于理解指数增长,例如复利,其中资金以与其当前值成比例的速率增长。此外,以10为底的对数在计算机科学中也发挥着重要作用,特别是在算法和数据结构中。许多算法的复杂性可以用对数项来表示。例如,二分搜索,一种常见的搜索算法,其操作时间为O(log n),其中n是数据集中的元素数量。在这里,对数的底数通常假设为2,但理解以10为底的对数在比较不同算法的效率时仍然是有益的。除了其实际应用外,以10为底的对数在数学中也具有理论重要性。它作为指数函数和多项式函数之间的桥梁,提供了一种解决涉及指数的方程的方法。对数的性质,包括乘积、商和幂规则,使数学家能够更轻松地操纵方程。例如,性质log(a * b) = log(a) + log(b)显示了如何将乘法转换为加法,从而简化复杂的计算。虽然以10为底的对数极具实用性,但需要注意的是,其他底数也存在,例如自然对数(底数e)和二进制对数(底数2)。每个底数都有其特定的应用和最有效的上下文。然而,以10为底的对数仍然是教育中的基石,通常在高中数学课程中介绍,当学生学习关于指数函数及其反函数的内容时。总之,以10为底的对数是一个强大的数学工具,促进了各个学科的问题理解和解决。它简化复杂关系并提供对指数增长的洞察力,使其成为学术和实际应用中的基本概念。随着我们在日常生活中继续遇到对数关系,对以10为底的对数的扎实掌握无疑将增强我们的分析能力和解决问题的能力。

相关单词

logarithm

logarithm详解:怎么读、什么意思、用法