vertexes
简明释义
n. 顶点(vertex 的复数)
英英释义
单词用法
顶角 | |
镜顶屈光度 |
同义词
顶点 | 这个三角形有三个顶点。 | ||
角 | 在几何学中,多边形的角被称为顶点。 | ||
点 | 图中的每个点代表一个顶点。 |
反义词
边 | 这个形状的边是直的。 | ||
面 | 立方体的面都是正方形。 |
例句
1.The optimum knots ordinate formula in the least square sense is derived by computing coefficient matrix and curve vertexes under the specified subsection knots abscissas conditions.
在给定分段节点横坐标的条件下,通过确定系数矩阵和反求曲线顶点,基于最小二乘法推导出最优节点的纵坐标公式。
2.An algorithm for identifying the orientation of a polygon according to the sequence of extremity vertexes is proposed.
提出一种根据多边形各个极点在顶点序列中的先后顺序确定多边形方向的算法。
3.Takes all vertexes as initial population.
采用全部顶点做初始种群。
4.Permutation function was defined to put the vertexes in AAG in certain order according to attributes of vertexes.
根据模型面的属性集定义排序函数,将属性邻接图的顶点按照一定的序列排列。
5.I then had to consider how to index the vertexes.
我当时不得不考虑如何索引的顶点。
6.Based on homogeneous barycentric coordinates, a new geometric variable, sharpness factor, is defined for measuring sharpness of independent vertexes.
基于齐次重心坐标,定义了新的网格顶点几何变量——锐度因子。
7.The "mapping simplex method"is used instead of the "substitution of simplex vertexes".
用“映射单纯形”方法代替“单纯形顶点代换”方法;
8.The algorithm first describes the left image with DT mesh. As feature points, the vertexes of triangulations are matched in the right image for finding their corresponding points.
本文算法首先对立体图像对中的左图像进行DT网格剖分,把各三角形的顶点作为“特征点”在右图像中寻找它们的匹配点。
9.The vertexes 顶点 of the polygon determine its shape and area.
多边形的vertexes 顶点决定了它的形状和面积。
10.In computer graphics, we often manipulate the vertexes 顶点 of a 3D model.
在计算机图形学中,我们经常操作3D模型的vertexes 顶点。
11.When calculating the centroid, you need to find the average of all the vertexes 顶点 coordinates.
在计算重心时,需要找到所有vertexes 顶点坐标的平均值。
12.The graph consists of several vertexes 顶点 connected by edges.
这个图由几个vertexes 顶点通过边连接而成。
13.In geometry, a triangle has three vertexes 顶点 that form its corners.
在几何学中,一个三角形有三个vertexes 顶点,形成其角落。
作文
In the study of geometry, one often encounters various shapes and figures, each with its own unique characteristics. Among these, polygons stand out due to their simplicity and versatility. A polygon is defined as a closed figure formed by a finite number of straight line segments connected end to end. The points where these line segments meet are called vertexes (中文释义:顶点). Each vertex contributes to the overall shape and structure of the polygon, making it an essential element in geometric discussions.To illustrate the concept further, let us consider a triangle, which is the simplest form of a polygon. A triangle consists of three sides and three vertexes. The arrangement of these vertexes determines the type of triangle formed, whether it be equilateral, isosceles, or scalene. In an equilateral triangle, all sides are of equal length, and thus all vertexes are congruent. Conversely, in a scalene triangle, all sides and vertexes are distinct, showcasing the diversity that can arise even within such a simple shape.As we progress to more complex polygons, such as quadrilaterals, pentagons, and hexagons, the importance of vertexes becomes increasingly evident. A quadrilateral has four sides and four vertexes, which can form various shapes such as squares, rectangles, and trapezoids. Each variation arises from the different arrangements and lengths of the sides, which in turn influence the positions of the vertexes. Understanding how to manipulate these vertexes allows for the creation of intricate designs and patterns, demonstrating the foundational role they play in both mathematics and art.Moreover, vertexes are not limited to two-dimensional shapes. In three-dimensional geometry, the concept expands to encompass solids like cubes, spheres, and pyramids. A cube, for instance, has eight vertexes. These vertexes are crucial in defining the cube's shape and volume. When visualizing a pyramid, the apex serves as a single vertex, while the base comprises multiple vertexes depending on the shape of the base. This three-dimensional perspective enriches our understanding of vertexes and their significance in spatial reasoning.In computer graphics and modeling, vertexes take on an even more critical role. They are used to represent points in space, allowing for the construction of complex models and animations. Each vertex carries information about its position, color, and texture, enabling artists and designers to create lifelike representations of objects. The manipulation of these vertexes through software tools allows for endless creativity and innovation in digital art.In conclusion, vertexes are fundamental components in the study of geometry, playing a vital role in the formation and understanding of various shapes and figures. From the simplicity of triangles to the complexity of three-dimensional models, vertexes provide the necessary structure that enables us to explore and appreciate the beauty of mathematics and design. By mastering the concept of vertexes, one can gain deeper insights into both theoretical and practical applications, highlighting their significance across multiple disciplines.
在几何学的研究中,人们常常会遇到各种形状和图形,每种都有其独特的特征。在这些形状中,多边形因其简单性和多样性而脱颖而出。多边形被定义为由有限数量的直线段首尾相连形成的封闭图形。这些直线段相交的点称为顶点(中文释义:vertexes)。每个顶点对多边形的整体形状和结构都至关重要,使其成为几何讨论中的一个基本元素。为了进一步说明这一概念,让我们考虑三角形,这是多边形中最简单的形式。三角形由三条边和三个顶点组成。这些顶点的排列决定了所形成的三角形的类型,无论是等边三角形、等腰三角形还是不等边三角形。在等边三角形中,所有边的长度相等,因此所有顶点都是全等的。相反,在不等边三角形中,所有边和顶点都是不同的,展示了即使在如此简单的形状中也能产生多样性。随着我们逐渐深入到更复杂的多边形,例如四边形、五边形和六边形,顶点的重要性变得愈加明显。四边形有四条边和四个顶点,可以形成各种形状,如正方形、矩形和梯形。每种变体都源于边的不同排列和长度,这反过来又影响顶点的位置。理解如何操控这些顶点使得创建复杂的设计和图案成为可能,展示了它们在数学和艺术中的基础作用。此外,顶点并不限于二维形状。在三维几何中,这一概念扩展到包含立体如立方体、球体和金字塔。例如,立方体有八个顶点。这些顶点在定义立方体的形状和体积中至关重要。当我们想象金字塔时,顶点作为一个单独的顶点,而底面根据底面的形状由多个顶点组成。这种三维视角丰富了我们对顶点及其在空间推理中重要性的理解。在计算机图形和建模中,顶点扮演着更为关键的角色。它们用于表示空间中的点,从而允许构建复杂的模型和动画。每个顶点携带有关其位置、颜色和纹理的信息,使艺术家和设计师能够创建物体的逼真表现。通过软件工具对这些顶点的操控使得数字艺术中的创造力和创新无穷无尽。总之,顶点是几何学研究中的基本组成部分,在形成和理解各种形状和图形中发挥着重要作用。从三角形的简单性到三维模型的复杂性,顶点提供了必要的结构,使我们能够探索和欣赏数学和设计的美。通过掌握顶点的概念,人们可以深入了解理论和实际应用,突显其在多个学科中的重要性。