backscattered electron image
简明释义
1. 背散射电子图像; 2. 反散射电子图象;
英英释义
例句
1.Using a scanning electron microscope, we obtained a backscattered electron image of the biological specimen.
使用扫描电子显微镜,我们获得了生物样本的反向散射电子图像。
2.Researchers used a backscattered electron image to analyze the mineral composition of the rock sample.
研究人员使用反向散射电子图像分析岩石样品的矿物组成。
3.The backscattered electron image provides detailed information about the surface composition of the sample.
这个反向散射电子图像提供了关于样品表面成分的详细信息。
4.In materials science, a backscattered electron image can reveal the grain structure of metals.
在材料科学中,反向散射电子图像可以揭示金属的晶粒结构。
5.The backscattered electron image showed a clear contrast between the different phases in the alloy.
该反向散射电子图像清晰地显示了合金中不同相之间的对比。
作文
In the field of materials science and electron microscopy, the term backscattered electron image refers to a specific imaging technique that utilizes electrons to reveal critical information about the surface structure and composition of materials. This technique is particularly valuable because it provides high-resolution images that can help researchers understand the properties of various materials at the microscopic level. The backscattered electron image is generated when high-energy electrons collide with a sample and are reflected back toward the detector. The intensity of the backscattered electrons varies depending on the atomic number of the elements in the sample, allowing for contrast in the resulting images. This characteristic makes backscattered electron images especially useful for distinguishing between different phases or materials within a composite sample.One of the key advantages of using backscattered electron images is their ability to provide compositional contrast. For example, in a sample containing both light and heavy elements, the heavier elements will produce a stronger backscatter signal due to their higher atomic number. This property allows scientists to easily identify and analyze different components within a material. Additionally, the spatial resolution of backscattered electron images can reach nanometer levels, making it possible to observe fine details that are crucial for understanding material behavior.Another important aspect of backscattered electron images is their role in the analysis of microstructural features. Researchers often use this imaging technique to investigate grain boundaries, phase distributions, and other structural characteristics that influence the mechanical and thermal properties of materials. By examining these features, scientists can gain insights into how materials can be engineered for specific applications, such as improving strength, ductility, or resistance to corrosion.Moreover, backscattered electron imaging is not limited to materials science; it also finds applications in biology and semiconductor research. In biological studies, for instance, it can be used to visualize cellular structures and interactions, providing valuable information for understanding complex biological processes. In the semiconductor industry, backscattered electron images help in assessing the quality of silicon wafers and other materials used in electronic devices.In conclusion, the backscattered electron image is a powerful tool in various scientific fields, offering detailed insights into material composition and structure. Its ability to generate high-resolution images with compositional contrast makes it an essential technique for researchers aiming to advance our understanding of materials at the microscopic level. As technology continues to evolve, the applications of backscattered electron imaging are likely to expand, further enhancing its importance in both academic research and industrial applications.
在材料科学和电子显微镜领域,术语反向散射电子图像指的是一种特定的成像技术,该技术利用电子揭示材料表面结构和成分的重要信息。这种技术特别有价值,因为它提供了高分辨率的图像,可以帮助研究人员在微观层面上理解各种材料的特性。当高能电子与样品碰撞并反射回探测器时,就会生成反向散射电子图像。反向散射电子的强度因样品中元素的原子序数而异,从而使得生成的图像具有对比度。这一特性使得反向散射电子图像在区分复合样品中的不同相或材料方面尤其有用。使用反向散射电子图像的一个主要优点是其提供成分对比的能力。例如,在包含轻元素和重元素的样品中,重元素将由于其较高的原子序数而产生更强的反向散射信号。这一特性使科学家能够轻松识别和分析材料中的不同组分。此外,反向散射电子图像的空间分辨率可以达到纳米级别,使得观察影响材料行为的细节成为可能。反向散射电子图像的另一个重要方面是其在微观结构特征分析中的作用。研究人员通常使用这种成像技术来研究晶界、相分布和其他影响材料机械和热性能的结构特征。通过检查这些特征,科学家可以深入了解如何为特定应用工程材料,例如提高强度、延展性或耐腐蚀性。此外,反向散射电子成像不仅限于材料科学;它在生物学和半导体研究中也有应用。在生物研究中,例如,它可以用于可视化细胞结构和相互作用,为理解复杂的生物过程提供宝贵的信息。在半导体行业,反向散射电子图像有助于评估用于电子设备的硅晶圆和其他材料的质量。总之,反向散射电子图像是各个科学领域的一种强大工具,提供关于材料成分和结构的详细见解。其生成具有成分对比的高分辨率图像的能力,使其成为研究人员旨在深化我们对微观层面材料理解的基本技术。随着技术的不断发展,反向散射电子成像的应用可能会扩展,进一步增强其在学术研究和工业应用中的重要性。
相关单词