axisymmetrical coordinate

简明释义

轴对称坐标;

英英释义

A coordinate system in which the geometry is symmetrical around a central axis, allowing for simplifications in mathematical modeling and analysis of physical systems.

一种坐标系统,其几何形状围绕一个中心轴对称,从而在物理系统的数学建模和分析中允许简化。

例句

1.In electromagnetics, axisymmetrical coordinate 轴对称坐标 systems are used to analyze fields around cylindrical structures.

在电磁学中,轴对称坐标 轴对称坐标系统用于分析圆柱结构周围的场。

2.Using axisymmetrical coordinate 轴对称坐标 allows for more efficient numerical simulations in computational fluid dynamics.

使用轴对称坐标 轴对称坐标可以提高计算流体动力学中的数值模拟效率。

3.In fluid dynamics, we often use axisymmetrical coordinate 轴对称坐标 systems to simplify the analysis of cylindrical flows.

在流体动力学中,我们经常使用轴对称坐标 轴对称坐标系统来简化圆柱流的分析。

4.When modeling the stress distribution in a pipe, engineers prefer axisymmetrical coordinate 轴对称坐标 systems for their simplicity.

在建模管道中的应力分布时,工程师更喜欢使用轴对称坐标 轴对称坐标系统,因为它们简单。

5.The equations governing heat transfer in a cylinder can be easily solved using axisymmetrical coordinate 轴对称坐标 transformations.

在圆柱体中的热传导方程可以通过使用轴对称坐标 轴对称坐标变换轻松求解。

作文

In the field of mathematics and engineering, understanding different coordinate systems is crucial for solving complex problems. One such system is the axisymmetrical coordinate, which is particularly useful in scenarios where objects exhibit symmetry about an axis. This coordinate system simplifies the analysis of physical phenomena by reducing the number of dimensions that need to be considered. For example, when dealing with cylindrical objects, such as pipes or tanks, the axisymmetrical coordinate system allows engineers to model the behavior of fluids flowing through these structures more efficiently. The primary advantage of using axisymmetrical coordinates lies in their ability to transform a three-dimensional problem into a two-dimensional one. In this system, we focus on radial and axial coordinates, which means that instead of considering every point in three-dimensional space, we can represent the system using just two variables: the distance from the axis of symmetry and the position along the axis. This reduction in complexity not only saves time but also enhances the accuracy of calculations.Moreover, the axisymmetrical coordinate system is widely applied in various fields, including fluid dynamics, thermodynamics, and structural analysis. For instance, in fluid dynamics, engineers can use this coordinate system to analyze the flow patterns around cylindrical objects, helping them design more efficient systems and predict potential issues such as turbulence or pressure drops. Similarly, in thermodynamics, the axisymmetrical coordinate framework assists in understanding heat transfer processes in cylindrical geometries, which is essential for designing effective thermal management systems.In addition to its practical applications, the concept of axisymmetrical coordinates also has theoretical implications. It serves as a foundation for more advanced topics in mathematics, such as partial differential equations and boundary value problems. By mastering the principles of axisymmetrical coordinates, students and professionals alike can develop a deeper understanding of mathematical modeling and simulation techniques.Furthermore, the use of axisymmetrical coordinates is not limited to traditional engineering disciplines. In recent years, advancements in technology have enabled researchers to explore new areas where this coordinate system can be applied. For example, in the field of robotics, the design of robotic arms often involves cylindrical components, making axisymmetrical coordinates a valuable tool for optimizing their movement and functionality.In conclusion, the axisymmetrical coordinate system is an essential concept that plays a significant role in both theoretical and applied mathematics. Its ability to simplify complex problems involving symmetrical objects makes it a powerful tool for engineers, scientists, and researchers alike. By embracing the principles of axisymmetrical coordinates, individuals can enhance their problem-solving skills and contribute to advancements in various fields, ultimately leading to more efficient designs and innovative solutions. Understanding this coordinate system is not just beneficial; it is imperative for anyone looking to excel in the technical and scientific domains.

在数学和工程领域,理解不同的坐标系统对于解决复杂问题至关重要。其中一个系统是轴对称坐标,它特别适用于物体在某个轴上表现出对称性的场景。这个坐标系统通过减少需要考虑的维度,简化了物理现象的分析。例如,在处理圆柱形物体(如管道或储罐)时,轴对称坐标系统使工程师能够更有效地模拟流体在这些结构中流动的行为。使用轴对称坐标的主要优点在于它能够将三维问题转化为二维问题。在这个系统中,我们关注径向和轴向坐标,这意味着我们不再考虑三维空间中的每一个点,而是可以用两个变量来表示系统:距离对称轴的距离和沿轴的位置。这种复杂性的减少不仅节省了时间,还提高了计算的准确性。此外,轴对称坐标系统在流体动力学、热力学和结构分析等多个领域得到了广泛应用。例如,在流体动力学中,工程师可以利用这个坐标系统分析圆柱形物体周围的流动模式,帮助他们设计更高效的系统并预测潜在问题,例如湍流或压力下降。类似地,在热力学中,轴对称坐标框架有助于理解圆柱几何中的热传递过程,这对于设计有效的热管理系统至关重要。除了其实际应用之外,轴对称坐标的概念也具有理论意义。它为数学中的更高级主题奠定了基础,例如偏微分方程和边值问题。通过掌握轴对称坐标的原则,学生和专业人员都可以深入理解数学建模和仿真技术。此外,轴对称坐标的使用并不仅限于传统工程学科。近年来,技术的进步使研究人员能够探索这一坐标系统可以应用的新领域。例如,在机器人领域,机器人手臂的设计通常涉及圆柱形组件,使得轴对称坐标成为优化其运动和功能的重要工具。总之,轴对称坐标系统是一个基本概念,在理论和应用数学中发挥着重要作用。它简化了涉及对称物体的复杂问题,使其成为工程师、科学家和研究人员的强大工具。通过掌握轴对称坐标的原则,个人可以增强自己的问题解决能力,并为各个领域的进步做出贡献,最终导致更高效的设计和创新的解决方案。理解这个坐标系统不仅是有益的;对于任何希望在技术和科学领域中脱颖而出的人来说,它是必不可少的。

相关单词

coordinate

coordinate详解:怎么读、什么意思、用法